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 An interaction is taken to be the situation in which 
the administration of a drug or substance induces changes 
in the pharmacokinetics of another simultaneously 
administered drug – either increasing or decreasing the 
plasma concentration of the latter, and thus giving rise to 
the possibility of adverse reactions [1].

According to the primarily responsible pharmacological 
mechanism, H

1
 antihistamine interactions are 

fundamentally of a pharmacokinetic nature: the triggering 
drug or substance induces changes in the absorption and/
or metabolism of the H

1
 antihistamine [2]. Interactions of 

a pharmacodynamic nature, i.e., corresponding to those 
situations in which the actions of the drug or substance 
upon its target tissues induce modifi cations in the actions 
of another drug, have not been reported to date.

The interactions described to date between the 

H
1
 antihistamines and other drugs or substances 

fundamentally take place via three different routes: the 
P450 cytochrome system; P glycoprotein (PgP); and 
the members of the organic anion transport polypeptide 
(OATP) family.

Cytochrome P450

Humans are exposed to different foreign and artifi cially 
synthesized chemical substances, toxic products of 
natural origin, or drugs (xenobiotics). In response 
to such chemical agents, the body does not generate 
specifi c degradation and excretion mechanisms for each 
particular molecule. In a quest for increased effi ciency, a 
general mechanism is used, in charge of eliminating the 
maximum possible number of molecules from the body at 
one same time. A system of great functionality and with 
a broad range of action has therefore been developed: 
the enzymes belonging to the cytochrome P450 system 
(Figure 1). These are microsomal enzymes belonging to 
the family of hemoproteins and which are fundamentally 
located in the liver cells and enterocytes [3,4]. As a result, 
the fi rst point of metabolization of drugs or substances 
that are absorbed from the gastrointestinal tract is the 
intestine - not the liver.
The enzymes of the cytochrome P450 system are grouped 
into 14 families of genes with identical sequences, and 
17 subfamilies. In global terms, CYP1A2, CYP2C9, 
CYP2C19, CYP2D6 and CYP3A4 are the most important 
enzymes in human metabolism [5], while CYP2D6 and 
CYP3A4 are the most relevant in the specifi c case of the 
H

1
 antihistamines [6].
Some forms of cytochrome P450 are expressed on a 

constitutional basis, while others are expressed depending 
on the sex of the individual or the tissue in which they 
are located. In turn, some are differentially expressed 
during development, while others can be induced 
by chemical substances, environmental pollutants, 
etc. This combination of factors, and the existence 
of multiple forms of cytochrome P450, contribute to 
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Figure 1. Structure of cytochrome P450: hemoprotein 
composed of a protein component (apoprotein) and a 
prosthetic heme group.
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Table 1. Substrates, inhibitors and inducers of the CYP3A4 isoenzyme.

                                           Substrates                                              Inhibitors                                  Inducers

 
Acetaminophen Lansoprazole Cimetidine Carbamazepine 
Alfentanyl Lidocaine Clarithromycin Dexamethasone 
Alprazolam Loratadine Clotrimazole Phenobarbital 
Amiodarone Lovastatin Erythromycin Phenytoin 
Amitriptyline Midazolam Fluconazole Rifampicin 
Astemizole Nefazodone Fluoxetine Sulfadimidine 
Carbamazepine Nelfi navir Fluvoxamine Sulfi npyrazone 
Cisapride Nifedipine Gestodene Thiazolidinedione 
Cyclophosphamide Quinine Itraconazole Troleandomycin 
Cyclosporine Rupatadine Ketoconazole  
Dapsone Saquinavir Miconazole  
Digitoxin Sertraline Naringenin  
Diltiazem Tamoxifen Nefazodone  
Ebastine Terfenadine Paroxetine  
Erythromycin Testosterone Quinine  
Ethinylestradiol Theophylline Ritonavir  
Etoposide Triazolam Saquinavir  
Flutamide Troleandomycin Sertraline  
Imipramine Venlafaxine Troleandomycin  
Indinavir Verapamil Zileuton  
Ketoconazole Warfarin   

establish enormous interindividual variability. In the 
concrete case of CYP3A4 and CYP2D6 [7,8], a number 
of studies show their expression to be infl uenced by 
environmental factors, as a result of which their activity 
shows great interindividual variability. In the case of the 
H

1
 antihistamines, and more specifi cally of terfenadine 

and loratadine, great interindividual variability has been 
shown in their liver metabolism mediated by cytochrome 
P450 [9,10].

Accordingly, it seems that patients with diminished 
cytochrome P450 activity are at an increased risk of 
developing toxic concentrations of those substances 
that are metabolized via this pathway, even at doses 
within the therapeutic range, and without the need for 
concomitant interaction with other substances that inhibit 
this metabolic pathway.

Another point to be stressed is that drugs or other 
substances are not only able to act as cytochrome P450 
substrates (i.e., they can be metabolized by this enzyme 
system), but can also act as inducers or inhibitors 
of cytochrome P450 (i.e., respectively increasing or 
decreasing the enzyme activity of the system). Table 1 
summarizes the principal drugs that behave as CYP3A4 
substrates, inducers, or inhibitors.

P glycoprotein

P glycoprotein (PgP) constitutes a natural detoxifi cation 
system expressed in normal human tissues that possess 
secretory or barrier functions. The system has been 

30

developed in the small and large bowel, biliary canaliculi, 
proximal tubules of the kidney, vascular endothelial cells 
of the central nervous system, placenta, adrenal glands and 
testicles [11].

PgP acts as an extracting pump, involving a mechanism 
that has not been fully elucidated, though it is postulated 
that drugs or other substances pass through a hydrophobic 
pore structure composed of a transmembrane domain, 
requiring an energy-dependent conformation change in 
the protein structure. A second hypothesis proposed to 
explain how PgP is able to reduce drug concentrations is 
that an indirect mechanism is involved, via the regulation 
of pH and/or electric gradients.

Studies of PgP expression in turn have identifi ed the 
existence of polymorphisms [12,13].

PgP activity is saturated at high concentrations of the 
drug or of the substance that transports the latter. This 
explains why the fundamental importance of the system 
centers on those locations where drug concentration is 
lower, such as in plasma – where this regulatory function 
can be carried out by excreting the drug at kidney or bile 
level, etc., or by preventing the drug from crossing the 
blood-brain barrier (BBB) [14].

PgP is presently accepted to be an important factor 
in the distribution and excretion of drugs, and in drug 
interactions [15,16].

An interesting point is that some drugs or substances 
that act as substrates or modulators of PgP activity exert 
the same functions in relation to CYP3A4 or OATP. These 
factors must be taken into account as elements possibly 
predisposing to interactions. Table 2 summarizes the 
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Table 2. Interactions of some drugs / xenobiotics with cytochrome P450 and P glycoprotein.
                                                                   
 Drug / substance Cytochrome P450 P glycoprotein

Azithromycin Slight inhibition of CYP3A4 Substrate / inhibitor 
Cimetidine Inhibition of several isoenzymes Substrate 
Digoxin Substrate Substrate 
Erythromycin CYP3A4 inhibitor Substrate / inhibitor 
Fluoxetine CYP2D6 inhibitor Substrate 
Grapefruit juice CYP3A4 inhibitor Inhibitor 
Itraconazole CYP3A4 inhibitor Substrate / inhibitor 
Ketoconazole Inhibition of several isoenzymes Inhibitor 
Rifampicin Inducer of several isoenzymes Inducer 
Ritonavir CYP3A4 inhibitor Inhibitor / inducer 
Verapamil CYP3A4 substrate / inhibitor Substrate / inhibitor / inducer 

 

interactions of some drugs or substances with cytochrome 
P450 and PgP.

Organic anion transporter 
polypeptide (OATP)

The members of this family that have been identifi ed 
in humans include OATP-A, fundamentally expressed in 
brain endothelial cells; OATP-B with a broad distribution 
in numerous tissues such as the intestine and liver; and 
OATP-C and OATP-8 with expression in the liver only 
[11].

Their function is to participate in the distribution and 
excretion of drugs and other substances in the same way 
as PgP, though generally in the opposite direction. The 
xenobiotics that act as substrates for OATP can also serve 
as substrates for PgP; consequently, they may constitute a 
key factor in the appearance of interactions [17,18].

First generation H1 antihistamines

The fi rst generation (or classical) H
1
 antihistamines 

are lipophilic, and are classifi ed into different groups 
according to their chemical structure. All of them are 
metabolized by cytochrome P450 in the liver, and they 
do not function as substrates of PgP [19,20].

Although not all the metabolic routes are fully 
known, the majority of the classical H

1
 antihistamines are 

metabolized by the CYP2D6 isoenzyme, and some also 
by CYP3A4 [19,21].

 Based on studies using diphenhydramine as 
a model, the fi rst generation H

1
 antihistamines are not 

only substrates of CYP2D6 but moreover also inhibit 
the latter. This must be taken into account when such 
drugs are co-administered with substances that likewise 
require metabolization via cytochrome P450, such as 
metoprolol, tricyclic antidepressants, antiarrhythmic 
drugs, antipsychotics and tramadol [22,23].

Second generation H1 antihistamines

The second generation H
1
 antihistamines, which have 

been developed in the last 20 years, offer advantages 
with respect to their fi rst generation counterparts, such 
as a lesser anticholinergic or sedative effects. However, 
some of them are not without sporadic or very sporadic 
side effects, secondary to interactions with other drugs or 
substances.

The interactions occurring at metabolic level in 
relation to the second generation H

1 
antihistamines such 

as terfenadine, astemizole, loratadine, desloratadine, 
ebastine, fexofenadine, cetirizine, levocetirizine, 
mizolastine, rupatadine and epinastine have been 
extensively studied since the fi rst report of severe 
cardiac arrhythmic associated with the administration of 
terfenadine [24].

In general terms, it may be affi rmed that the second 
generation H

1
 antihistamines are PgP substrates [25] – 

hence their much lesser sedative effects compared with 
the fi rst generation drugs. In turn, some of the second 
generation antihistamines undergo important fi rst-step 
metabolization in the liver or intestine, mediated by 
cytochrome P450, as will be commented below.

Cytochrome P450 and pharmacological 
interaction with H1 antihistamines

The role of CYP3A4 in the metabolism of H
1
 

antihistamines has drawn considerable attention since 
the fi rst report that terfenadine can induce serious 
cardiac arrhythmia when co-administered with CYP3A4 
inhibitors such as erythromycin and ketoconazole 
[26,27].

Posteriorly, other substrates and/or inhibitors of 
CYP3A4 such as fl uoxetine [28], troleandomycin 
[29] and zileuton [30], among other substances, were 
investigated to evaluate their interaction with terfenadine 
- the latter being seen to increase its plasma levels as a 
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result. In contrast, when terfenadine is co-administered 
with CYP3A4 inducers such as the thiazolidinediones, 
its plasma levels may decrease as a result of increased 
metabolization mediated by this P450 isoenzyme 
[31,32].

Terfenadine undergoes complete fi rst-step 
metabolization in the liver via CYP3A4: this 
metabolization within the liver yields a number of 
inactive metabolites, together with fexofenadine, which 
is an active metabolite [33].

Fexofenadine in turn is not metabolized by cytochrome 
P450, and over 95% of the molecule is recovered in 
urine and stools [34]. It therefore does not interact 
with CYP3A4 inhibitors or with any other isoenzyme. 
Fexofenadine has been shown to be a H

1
 antihistamine 

with a high safety profi le, since it lacks cardiological side 
effects, even at high doses [35,36].

Astemizole has also been implicated in the induction 
of severe ventricular arrhythmias (torsades de pointes, 
TdP) when administered at high doses [37,38], or 
when co-administered with P450 enzyme inhibitors 
– fundamentally CYP3A4 isoenzyme inhibitors – such 
as ketoconazole [39] and erythromycin [40]. Although 
the process by which this occurs is not fully clear, some 
metabolites may contribute to this pathological cardiac 
response. Astemizole undergoes complete fi rst-step 
metabolization in the liver, fundamentally via CYP3A4 
[41], yielding different metabolites as a result. Some of 
these metabolites are pharmacologically active [42,43].

Loratadine also undergoes important fi rst-step 
processing in the liver, since it suffers almost complete 
metabolization by cytochrome P450, forming a range of 
metabolites [44]. One of these metabolites is desloratadine, 
which after further metabolization in turn yields an active 
metabolite called decarboethoxyloratadine. Its formation 
is mediated by both CYP3A4 and CYP2D6 [45].

On the basis of its liver metabolism, loratadine is a 
candidate for pharmacological interactions with other 
drugs that are metabolized by cytochrome P450.

Increases have been observed in the plasma 
concentration of loratadine when co-administered with 
CYP3A4 inhibitors such as erythromycin, ketoconazole, 
clarithromycin and cimetidine [46-48]. However, although 
there is a rise in the plasma levels of the drug, this does 
not seem to imply any cardiac complication, as revealed 
by the study of Kosoglou et al [49]. This is in contrast to 
the observations of Abernethy et al [50], who reported 
a prolongation in the QTc interval when loratadine was 
co-administered with a potent CYP3A4 inhibitor such 
as nefazodone. In any case, the conclusions drawn from 
the study of Abernethy et al have been questioned from 
the moment when Barbey, one of the co-authors of the 
work published by Abernethy, wrote a letter to the same 
scientifi c journal that published the work of Abernethy 
questioning the validness of the results due to the 
methodology employed and the statistical analysis made 
[51].

Although desloratadine when co-administered with 

inhibitors of cytochrome P450 (principally via CYP3A4; 
erythromycin and ketoconazole) shows a slight 
increase in its plasma concentrations [52], no adverse 
electrocardiographic effects have been recorded [53,54].

Ebastine is chemically related to terfenadine, and in 
the same way as the latter, it is totally transformed mainly 
via CYP3A4 to yield metabolites of which one is an 
active metabolite: carebastine [55].

When ebastine is co-administered with a CYP3A4 
inhibitor, its plasma levels are seen to increase [56]. 
This may result in altered electrocardiographic activity 
– hence the required consideration of the arrhythmogenic 
potential of the drug [57,58].

Mizolastine undergoes extensive transformation in 
the context of its metabolization via glucuronidation 
[59], with scant participation on the part of cytochrome 
P450. The resulting components are mainly eliminated as 
conjugates without transformation into active metabolites 
[60]. The plasma concentrations of mizolastine when 
co-administered with erythromycin or ketoconazole are 
high – though without relevance in relation to cardiac 
electrical activity [61-63].

Epinastine, a H
1
 antihistamine marketed in Spain 

only as eyedrops, does not undergo liver metabolization. 
As a result, it does not interact with liver cytochrome 
P450 inhibitors or inducers [64], and is moreover without 
cardiac adverse effects [65].

Cetirizine is a carboxylic acid metabolite of hydroxyzine. 
It does not undergo liver metabolization, and therefore does 
not interact with other drug substances via cytochrome 
P450 [66,67]. Likewise, no electrocardiographic effects 
have been observed in patients administered 6 times the 
recommended dosage [68].

Cetirizine is a racemic R and S enantiomer mixture. 
Levocetirizine, the S enantiomer of racemic cetirizine, 
obviously also does not undergo liver metabolization, and 
likewise no cardiac adverse effects or interactions with 
other drug substances have been documented [11,69].

The H
1
 antihistamine rupatadine is metabolized by 

cytochrome P450 in the liver, and undergoes interactions 
with drugs that inhibit this enzyme system – its plasma 
levels increasing as a result. However, no cardiac side 
effects have been documented [70].

In the same way that the fi rst generation H
1
 

antihistamines inhibit CYP2D6, there have been reports 
of second generation H

1
 antihistamine inhibitory action 

upon the cytochrome P450 system. This is the case 
for example of loratadine in relation to the CYP2C19 
isoenzyme, or of terfenadine, astemizole, cetirizine and 
mizolastine [71] – though this does not appear to have 
implications in terms of the appearance of interactions.

P glycoprotein and pharmacological 
interaction with H1 antihistamines

The plasma concentration of H
1 

antihistamines can 
be altered by the presence of PgP inhibitors such as 
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ketoconazole, cyclosporine or verapamil; of PgP substrates 
and inhibitors such as erythromycin, azithromycin, 
verapamil or itraconazole; or of PgP inducers such as 
verapamil or rifampicin [72] – since most (if not all) of 
them are PgP substrates to one degree or other.

Fexofenadine is a potent PgP substrate, and as such 
much of its bioavailability and clearance depend on 
this transport system [11]. Drugs or substances that are 
able to induce PgP, such as rifampicin, yield a lesser 
concentration of fexofenadine when co-administered 
with the latter drug; pharmacological interaction 
therefore exists in this case. The result of this interaction 
is a decrease in fexofenadine effi cacy [34].

Loratadine may act as both a substrate and potent 
inhibitor of PgP, though to a lesser degree than verapamil 
or cyclosporine; the possibility of pharmacological 
interactions therefore exists [73].

The interaction of desloratadine with other drugs at 
PgP level cannot be ruled out, since it is a PgP substrate 
even though it does not inhibit the latter; it therefore does 
not seem responsible for possible interaction [73,74].

The information on mizolastine is scarce and limited 
to an increase in plasma levels of digoxin – a typical PgP 
substrate. Consequently, mizolastine would appear to 
behave as a PgP inhibitor [75].

Levocetirizine is a weak PgP substrate, it being 
unlikely for the drug to interact with other substances at 
this level, according to the study model involved (Caco-2 
cells). The same consideration applies to cetirizine [76]. 
However, cetirizine has also been investigated in another 
model (a murine model involving the canceling of PgP 
expression), showing it to be a clear PgP substrate [77]. 
As a result, possible interaction with other drugs at this 
level acquires increased relevance.

Terfenadine and ebastine have shown their PgP 
inhibitory effect and capacity to interact with other drugs 
that function as PgP substrates; they may thus revert 
multipharmacological resistance [78,25].

Organic anion transport polypeptide 
(OATP) and pharmacological 
interaction with H1 antihistamines

The role of OATP in the pharmacokinetics of H
1 

antihistamines has been examined mainly in application 
to fexofenadine and desloratadine.

In this context, fexofenadine is a substrate of OATP-
A, while desloratadine is not [17,79]. When fexofenadine 
is co-administered with a PgP inhibitor, the levels of the 
former increase three-fold in plasma.

Likewise, when fexofenadine is co-administered with 
probenecid (an OATP inhibitor), its plasma concentrations 
increase signifi cantly at the expense of a diminished 
kidney clearance [80]. Therefore, pharmacological 
interaction is seen to occur at the level of this particular 
transport system, though the observed effects are diffi cult 
to justify in terms of this mechanism alone.

Interaction of H1 antihistamines 
with food

In the same way that H
1
 antihistamines can interact 

with other drugs at metabolic level, they can also do so 
with elements found in food.

It is known that the concomitant ingestion of grapefruit 
juice increases the plasma levels of certain drugs such as 
cyclosporine, calcium antagonists and benzodiazepines, 
among others [81]. This effect is attributable to the 
capacity of grapefruit juice to inhibit CYP3A4 at 
intestinal level [82] (this isoenzyme conforming 70% 
of the total enzymes of cytochrome P450 located in the 
intestine, and 30% of the activity of the system in the 
liver [83]). Intestinal CYP3A4 constitutes the fi rst-step 
transformation point in the metabolization of certain drug 
substances, such as the H1 antihistamines. 

It is therefore to be expected that grapefruit juice is 
able to increase the bioavailability of H

1
 antihistamines 

through interaction at intestinal level – interaction within 
the liver being of scant relevance [82,84].

Grapefruit juice has also been shown to induce PgP 
at intestinal level; therefore, drugs which are substrates 
for this particular transport system could experience a 
decrease in bioavailability as a result of such interaction 
[85,86].

The grapefruit juice components that appear to be 
implicated in such interactions include fl avonoids and 
furanocoumarins. The fl avonoid naringin, which is 
specifi c of grapefruit juice, exerts an inhibitory effect 
upon CYP3A4, mediated by its active metabolite 
naringenin, as established by the results of in vitro 
studies [87], though these fi ndings are not as conclusive 
as those obtained from in vivo studies. In the group of 
the furanocoumarins, bergamottin has also been shown 
to be a potent CYP3A4 inhibitor [88]. However, there are 
data showing that bergamottin is not the key element in 
the interaction of grapefruit juice with drug substances at 
CYP3A4 level [89]. Possibly, grapefruit juice-mediated 
fi rst-step inhibition of metabolism at intestinal level 
may be attributable to the combination of fl avonoids and 
furanocoumarins [86]. 

Grapefruit juice has shown interaction with terfenadine 
to a degree similar to that observed with itraconazole or 
erythromycin [90].

The other H
1
 antihistamines metabolized via CYP3A4, 

such as ebastine or loratadine, are also potentially able to 
interact with grapefruit juice [86].

While fexofenadine is not metabolized by CYP3A4, 
interaction does exist at PgP level, and particularly at 
OATP level; consequently, the co-administration of 
fexofenadine and grapefruit juice gives rise to a drop in 
drug plasma concentration – an effect also observed with 
orange and apple juice [17,18].

In the case of desloratadine, no interaction with 
grapefruit juice has been reported [91].

Among the interactions of the H
1
 antihistamines with 

foods, descriptions have also been made of the inhibition 
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of astemizole metabolism at CYP3A4 level when the 
drug is administered with tonic water. The component 
responsible for this interaction between astemizole and 
tonic water is quinine, present in the latter [92]. Such 
interaction results in electrocardiographic alterations 
secondary to QT interval prolongation [93].

Conclusions

Most fi rst generation H
1
 antihistamines inhibit 

cytochrome P450 (fundamentally isoenzyme CYP2D6), 
and are able to alter the metabolism of other drug 
substances that are detoxifi ed via this pathway, such 
as for example venlafaxine, tricyclic antidepressants, 
beta-blockers, antiarrhythmic drugs, and tramadol. The 
second generation antihistamines such as terfenadine or 
astemizole have demonstrated cardiotoxic potential when 
their plasma concentrations are elevated secondary to 
interaction with other drugs – fundamentally at CYP3A4 
level. Such effects may even be observed as a result of 
interaction with certain foods, such as grapefruit juice. 
Fexofenadine, desloratadine, cetirizine, levocetirizine and 
rupatadine have shown no cardiotoxic effects when their 
plasma levels are increased as a result of interaction with 
drugs or fruit juices at CYP3A4, PgP and/or OATP level. 
In the case of loratadine, a study has shown its negative 
effect upon cardiac electrical activity (prolongation of 
the QT interval) when its plasma levels are raised as a 
consequence of co-administration with drugs exerting 
potent inhibitory effects upon isoenzyme CYP3A4 or 
CYP2D6. Other studies have obtained opposite results, 
however. None of the second generation H

1
 antihistamines 

inhibit or induce isoenzyme CYP3A4.
To summarize, it can be affi rmed that the inhibition 

of isoenzymes CYP3A4 and CYP2D6 by other drug 
substances that are co-administered with second 
generation H

1 
antihistamines can give rise to interactions 

with potentially serious clinical implications – though 
only in exceptional cases.
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