Immune Responses to *Tyrophagus putrescentiae*–Induced Airway Inflammation in Mice

E-C Liao,1 C-M Ho,2 S-C Yin,1 J-J Tsai1,3,4

1Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
2Department of Parasitology, National Yang-Ming University, Taipei, Taiwan
3Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan
4College of Life Sciences, National Chung Hsing University, Taichung, Taiwan

Abstract

Background: Storage mites are a source of Aeroallergens that affect patients with allergic rhinitis and asthma. *Tyrophagus putrescentiae* is a causative factor of airway hypersensitivity, but the mechanisms and pathogenesis of *T putrescentiae*–induced allergy are not well understood.

Objective: This study aimed to develop a murine model of *T putrescentiae*–induced allergic asthma.

Methods: Immune responses and physiologic variations in immunoglobulins (Ig), leukocyte subpopulations, cytokines, gene expression, pulmonary function, and lung pathology were evaluated after intraperitoneal sensitization and intratracheal challenge with crude extract of *T putrescentiae*.

Results: After sensitization with aluminum hydroxide and challenge with *T putrescentiae* in mice, levels of *T putrescentiae*–specific IgE and IgG1 in sera increased significantly compared to the normal saline group (*P* < .01). Values for inflammatory leukocytes (neutrophils and eosinophils) and cytokines (interleukin [IL] 4, IL-5, and IL-13) increased significantly after sensitization. In terms of pulmonary function, pause values were significantly enhanced in *T putrescentiae*–sensitized mice after intratracheal challenge with *T putrescentiae* (*P* < .05). Expression of type 2 helper T cell (Th2)–related genes (IL4, IL5, IL13, and RANTES), Th2–specific transcription factor (GATA-3), and proinflammatory genes (IL6), and Th17–related genes (IL17F) increased significantly after airway challenge. Sensitization with *T putrescentiae* crude extract led to inflammation of lung tissue, thickening of the tracheal wall, and tracheal rupture.

Conclusions: Intraperitoneal sensitization followed by intratracheal challenge with crude extract of *T putrescentiae* can induce airway inflammation in BALB/c mice. The symptoms observed in a mouse model of allergic asthma, in terms of immune and clinical parameters, are reminiscent of the symptoms of allergic asthma in humans. A mouse model can be used to evaluate the therapeutic effectiveness of drugs on *T putrescentiae*–induced airway inflammation in humans.

Key words: Storage mites. *Tyrophagus putrescentiae*. Mouse model. Airway inflammation. IL-17F.

Resumen

Antecedentes: Los ácaros de almacenamiento son una fuente de aeroalergenos en pacientes con rinitis y asma alérgica. El *Tyrophagus putrescentiae* (*Tp*) es causante de reacciones de hipersensibilidad de las vías respiratorias, sin embargo los mecanismos y la patogenia de esta enfermedad están aún por dilucidar.

Objetivo: El presente estudio tuvo como objetivo el establecer un modelo murino de asma alérgica inducida por el *Tp*.

Métodos: Los ratones fueron sensibilizados con un extracto crudo de *Tp* por vía intra-peritoneal y, posteriormente, provocados con el mismo, por vía intratraqueal. Se cuantificaron diferentes parámetros de la respuesta inmunitaria como: variaciones en la concentración de inmunoglobulinas, sub poblaciones leucocitarias, citocinas y expresión de genes, así como la función pulmonar y, finalmente, se realizaron estudios histológicos.

Resultados: Los ratones sensibilizados y provocados con *Tp* desarrollaron un aumento significativo de los niveles de IgE e IgG1 específicas de *Tp* en suero, en comparación con el grupo NS (*p* < .01). Asimismo, se observó un incremento significativo, después de la sensibilización, en la cifra de leucocitos inflamatorios (neutrófilos y eosinófilos) y de algunas citocinas (IL-4, IL-5 e IL-13). En la función pulmonar, se obtuvieron valores significativamente mayores de Penh (*p* < .05) en los ratones sensibilizados a *Tp*. En el estudio de la expresión génica, se observó que los genes relacionados con la respuesta Th2 (IL-4, IL-5, IL-13, y RANTES), Th2 específica del factor de transcripción GATA-3, pro-inflamatoria (IL-6), y Th17 (IL-17F), aumentó significativamente tras la provocación intratraqueal. En los ratones sensibilizados con extracto crudo *Tp* se confirmó una histología pulmonar con inflamación del tejido pulmonar y alteraciones traqueales.
Introduction

Increasing evidence suggests that sensitization to indoor allergenic mites is a causative factor in the development of airway hypersensitivity among people who are genetically predisposed to immunoglobulin (Ig) E–mediated responses [1-3]. Mites are generally divided into 2 categories, namely, house dust mites and storage mites [4,5], and both types have been shown to cause allergic symptoms of bronchial asthma, allergic rhinitis, conjunctivitis, and atopic dermatitis [6,7]. Concomitant sensitization to house dust and storage mites in patients with allergic rhinitis and patients with asthma is strongly associated with airway hypersensitivity [8]. In clinical practice, the importance of house dust mites grows daily, and, to date, 21 different groups of allergens have been characterized in house dust mites and found to elicit varying degrees of IgE reactivity and T-cell responses [7]. Recently, storage mites have been reported to be key allergenic components of dust samples worldwide, thus highlighting their clinical significance [9].

Storage mites have been reported to cause anaphylaxis through ingestion of mite-contaminated foods [10]. Based on its allergenic potential and abundance, the storage mite *Tyrophagus putrescentiae* is a major cause of allergic asthma and allergic rhinitis. *T. putrescentiae* is found worldwide, mainly in contaminated food such as wheat flour, wheat germ, cheese, and cereal [11]. *T. putrescentiae*–induced allergy is mostly reported as occupational exposure among farmers, grain workers, bankers, and food industry workers and is considered closely associated with respiratory diseases in these individuals [12]. Sensitization to *T. putrescentiae* has been reported in both urban and rural areas [13]. However, while it is well known that *T. putrescentiae* can cause allergic respiratory symptoms after occupational exposure, more attention is given to its allergenicity in uninhabited environments and to its role in the pathogenesis of allergic diseases. At least 20 IgE-binding allergenic components of *T. putrescentiae* have been detected in human sera [11], but their effects on sensitization and pathogenesis have not yet been clarified. The mechanisms involved in intraperitoneal sensitization and intratracheal challenge with *T. putrescentiae* have not been determined.

Given that no suitable animal model of *T. putrescentiae*–induced allergic inflammation has been developed, it would be interesting to apply such a model to evaluate the effectiveness of therapy. This study aimed to observe physiologic changes during immunization using *T. putrescentiae* in conjunction with aluminum hydroxide in a mouse model. Specifically, this study aimed to evaluate physical variations in Ig, leukocyte subpopulations, cytokines, gene expression, and pulmonary function after intraperitoneal sensitization and intratracheal challenge with crude *T. putrescentiae* extract.

Materials and Methods

Animals and Experimental Schedule

Female BALB/c mice (6-8 weeks old) were obtained from the National Laboratory Breeding Research Center in Taiwan. The Animal Committee of the Taichung Veterans General Hospital approved the experimental procedures. Groups of 6 mice were caged separately according to their treatment and raised in a specific pathogen-free environment. The mice were sensitized 3 times by intraperitoneal injection with crude *T. putrescentiae* extracts emulsified in aluminum hydroxide (Whitehall Lab Ltd.) (Figure 1). After sensitization, the mice underwent intratracheal challenge twice with crude *T. putrescentiae* extracts emulsified in aluminum hydroxide (Whitehall Lab Ltd.) (Figure 1). After sensitization, the mice underwent intratracheal challenge twice with crude
"T. putrescentiae" extract (5 μg/20 μL), and pulmonary function
was assessed by measuring airway hyperresponsiveness. The
control group received an intraperitoneal injection of normal
saline with no intratracheal challenge. Bronchoalveolar
lavage fluid (BALF) and blood were collected after the
mice were sacrificed.

Determination of Serum Allergen-Specific Ig

Serum was isolated using Ficoll-paque Premium
(GE Healthcare), and "T. putrescentiae"–specific IgE, IgG1,
and IgG2a titers were determined using enzyme-linked
immunosorbent assay (ELISA), as described previously [14].
Briefly, the crude "T. putrescentiae" extract was prepared and
added (5 μg/mL) to buffer-coated plates (0.05 M carbonate/
bicarbonate; pH, 9.6) at 4°C overnight [15]. Diluted mouse
sera (1:5 dilution for IgE, 1:100 dilution for IgG1, and
1:25 dilution for IgG2a) were incubated and washed with
phosphate-buffered saline/0.05% Tween-20 (PBST). Goat
antimouse horseradish peroxidase–conjugated antibody (1:800
dilution) was added (5 μL) to buffer-coated plates (0.05 M carbonate/
bicarbonate; pH, 9.6) at 4°C overnight [15]. Diluted mouse
sera (1:5 dilution for IgE, 1:100 dilution for IgG1, and
1:25 dilution for IgG2a) were incubated and washed with
phosphate-buffered saline/0.05% Tween-20 (PBST). Goat
antimouse horseradish peroxidase–conjugated antibody (1:800
dilution for IgE and 1:2000 dilution for IgG1 and IgG2a)
(Southern Biotech Associates, Inc) was added and developed
with 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)
(Zymed). The reaction was stopped with 50 μL of 4N H2SO4,
and the absorbance of optical density was determined at 405
nm using a PowerWave-X340 ELISA reader (Bio TEK).
The results were expressed as ELISA units.

Bronchoalveolar Lavage Fluid Collection and Cytokine Measurement

In order to obtain BALF, 1 mL of sterile endotoxin-free
saline was injected into the lungs of each mouse via the trachea.
Approximately 0.85 mL of the washing solution was recovered.
In the total leukocyte count, 100 μL of BALF was used for the
cytospin preparations before application of Liu stain (Tonyar
Diagnostic Inc). The cytokines interleukin (IL) 4, IL-5, and
IL-13 were measured using commercially available ELISA kits
(R&D Minneapolis) containing mouse monoclonal antibody
recognizing different epitopes of the cytokine molecules. The
kits were used according to the manufacturer’s instructions,
and results were expressed as pg/mL in BALF. The lowest
detectable concentration was 10 pg/mL.

Determination of Pulmonary Function

Airway hyperresponsiveness was measured by
methacholine-induced airway obstruction as described
previously [16] using 4 individual whole-body plethysmography
chambers (Buxco Electronics). The results were analyzed using the
BioSystem XA program (Buxco Electronics). The enhanced
pause (Penh) was calculated following the manufacturer’s
instructions for monitoring airway hyperresponsiveness
[17]. The aerosol was generated by placing 5 mL of PBS or
methacholine solution (Sigma, 6.25-25 mg/mL) in the cup of
an ultrasonic nebulizer (De Vilbiss). A dose-response curve
was calculated for methacholine starting at a low dose of
6.25 mg/mL and increasing to 25 mg/mL. The Penh value
obtained for each methacholine dose was presented as mean
(SD). Differences in respiratory parameters between the groups
were investigated using analysis of variance.

Cell Culture, Immunofluorescence Staining, and Flow Cytometry

Cytokines in activated murine helper T (Th) cells were
assayed according to the method of Assenmacher et al [18].
Three-color staining methods were used to analyze expression
of IL-4 and interferon (IFN) γ in CD4+ cells. Leukocytes
from the peripheral blood of 6 mice were pooled and
stimulated with phorbol myristate acetate (PMA; 50 ng/mL),
ionomycin (2 μM), and GolgiStop (Cytofix/Cytoperm Plus,
Pharmlingen) for 5 hours before being washed twice with PBS.
The cells were stained with peridinin chlorophyll-a–protein
(PerCP)–conjugated rat antimouse CD4 monoclonal antibody
(BD Biosciences) at room temperature for 30 minutes and
washed with PBS. Cells were fixed with cytofix/cytoperm
at room temperature for 30 minutes, washed with PBS,
and stained with fluorescein isothiocyanate–conjugated rat
antimouse IFN-γ monoclonal antibody (BD Biosciences) and
R-phycocerythin–conjugated rat antimouse IL-4 monoclonal
antibody (BD Biosciences) at room temperature for 30 minutes
and washed with PBS. The cells were resuspended in 0.5 mL
PBS with 0.1% (wt/vol) sodium azide. Mean fluorescence
was measured using a flow cytometer (Becton Dickinson). A total
of 5000 cells were analyzed in each sample.

Statistical Analysis

SPSS Sample Power 2.0 was used to analyze the statistical
power. The differences between the groups were analyzed
using the Mann-Whitney test. Statistical significance was set
at P<.05. Results were expressed as arithmetic mean (2SD)
for each group.

Results

Effects of Intraperitoneal Sensitization on Serum Immunoglobulin Production

To determine the effect of crude "T. putrescentiae" extract
on immunoglobulin production, different doses of extract
(10 or 40 μg) were used for intraperitoneal sensitization. The
results showed that baseline levels of "T. putrescentiae"–specific
IgE and IgG1 were undetectable before sensitization on day 0.
However, "T. putrescentiae"–specific IgE and IgG1 in sera
from the 40-μg group increased significantly (P<.01) when
compared with those of the normal saline group on day 21
after sensitization (Figure 2). Although IgE and IgG1 were
elevated. Sensitization with "T. putrescentiae" had no effect
on IgG2a production.

Effects of Intraperitoneal Sensitization and Intratracheal Challenge on Inflammatory Leukocytes and Cytokines in the Airways

Airway inflammation was compared by investigating
inflammatory leukocyte subpopulations and cytokines
in BALF. After intraperitoneal sensitization, the body
weights of both experimental groups were similar to those
of the normal saline group. Neutrophilic and eosinophilic
infiltrations in BALF were significantly higher after sensitization with 40 μg of *T. putrescentiae* extract than with normal saline (*P*<.01; Figure 3A). In *T. putrescentiae*-sensitized mice, levels of IL-4, IL-5, and IL-13 in BALF were higher than in the normal saline group, but the difference was only significant for the 40-μg group (*P*<.01; Figure 3B). Levels of inflammatory leukocytes (neutrophils and eosinophils) and cytokines (IL-4, IL-5, and IL-13) increased significantly after sensitization with crude *T. putrescentiae* extract (40 μg).
Effects of Intraperitoneal Sensitization and Intratracheal Challenge on Airway Hyperresponsiveness

Because airway hyperresponsiveness was a functional trademark of asthma, hypersensitivity to methacholine was increased after intratracheal allergen challenge. Airway hypersensitivity to methacholine was evaluated 48 hours after 2 intratracheal challenges with *T. putrescentiae*. Penh was increased after inhalation of methacholine in both the 10-μg and the 40-μg groups, but not in the normal saline group. In the *T. putrescentiae*-sensitized mice, the Penh values were significantly enhanced (*P* < .05) after the intratracheal challenge (40 μg) and methacholine challenge (at 12.5 and 25 mg/mL) (Figure 4).

Effects of Intraperitoneal Sensitization and Intratracheal Challenge on Production of Cytokines by Peripheral Blood Leukocytes

Peripheral blood leukocytes were collected and cultured with PMA and ionomycin for 5 hours before CD4+ cells producing the T_{H1}-type cytokine IFN-γ and T_{H2}-type cytokine IL-4 were analyzed. The results showed that the percentage of CD4+ cells producing IL-4 was higher in *T. putrescentiae*-sensitized mice than in the normal saline group (Table). The percentage of CD4+ cells producing IL-4 increased concomitantly with increasing concentrations of crude *T. putrescentiae* extract. However, the percentage of CD4+ cells producing IFN-γ was lower in mice sensitized with *T. putrescentiae* than in the normal saline group. When the ratios of CD4+ cells producing IFN-γ and IL-4 were compared between the groups, the lowest ratio was found in the mice sensitized with 40 μg of crude *T. putrescentiae* extract.

Effects of Intraperitoneal Sensitization and Intratracheal Challenge on Expression of Genes in Lung Tissue

Lung tissue was acquired for real-time polymerase chain reaction assay to investigate gene expression, including that of T_{H2}-related genes (IL4, IL5, IL13, RANTES, and GATA-3), the proinflammatory gene IL6, and the T_{H17}-related gene IL17F.
The results of real-time polymerase chain reaction revealed significant upregulation of the TH2-related cytokines IL-4, IL-5, and IL-13 (5-fold, 1.6-fold, and 1.2-fold baseline levels, respectively) in the 40-μg group (P<.05; Figure 5). This group also had a 1.2-fold increase in the expression of the RANTES gene (P<.01), and a 2-fold increase over baseline in expression of \(\text{IL-6} \) and \(\text{IL-17F} \) (P<.01). Expression of the TH2-specific transcription factor GATA-3 was 0.4-fold and 1.2-fold higher than that of the internal control in the 10-μg and 40-μg groups, respectively (Figure 5).

Effects of Intraperitoneal Sensitization and Intratracheal Challenge on Lung Pathology

A histopathology study (hematoxylin-eosin staining) was performed to determine whether intraperitoneal sensitization with crude \(T \) putrescentiae extract affected lung pathology. The histologic scores for each field were based on tracheal thickness, inflammatory cell count, and tracheal rupture. The results showed that airway challenge led to marked infiltration of eosinophils in \(T \) putrescentiae–sensitized mice, especially in the 40-μg group (Figure 6A). Both tracheal thickness and tracheal rupture were significantly increased in the 40-μg group. Moreover, goblet cell metaplasia and mucus hypersecretion were more easily detected in mice sensitized to and challenged with \(T \) putrescentiae. The histologic scores were significantly higher in the 40-μg group than in the normal saline group (P<.01) (Figure 6B). Representative photomicrographs and histological scores are shown in Figures 6A and 6C. The findings indicated that sensitization with crude \(T \) putrescentiae extract led to significant expression of lung tissue inflammation, tracheal thickening, and tracheal rupture.
Discussion

Allergic disorders affect 10%-20% of the population in developed countries. Allergic symptoms are triggered mainly by allergen-mediated cross-linking of specific IgE on the surface of mast cells and basophils, leading to the release of histamine and other mediators. Storage mites, which are similar to house dust mites, have been shown to cause allergic diseases such as bronchial asthma, allergic rhinitis, and conjunctivitis. They cohabit with house dust mites in the environment, and have even caused anaphylaxis after ingestion of contaminated food [10,13]. The importance of storage mites is growing in clinical medicine, and the prevalence of sensitization to T. putrescentiae in particular is significant, ranging from 22% to 43% in Korean [13], Taiwanese [15], and European allergy patients [19-21].

Several studies have used animal models of asthma and different allergen species to investigate airway inflammation; however, none have used T. putrescentiae as the sensitizing allergen. The present study revealed that 40 μg of T. putrescentiae extract combined with 4 mg of aluminum hydroxide, not normal saline, can upregulate production of T. putrescentiae-specific IgE and IgG1 and significantly enhance the production of the inflammatory cytokines IL-4, IL-5, and IL-13 in BALF. We found similar results in a previous study, where serum concentrations of house mite allergen-specific IgG and IgE and the inflammatory cytokine IL-4 increased significantly after intraperitoneal sensitization and intratracheal challenge [22].

Brimnes et al [23] showed that allergen-specific IgE in serum and BALF doubled or increased 5-fold after mice were sensitized with 3 intraperitoneal injections of alum-adsorbed Phleum pratense extract followed by intranasal challenge. Immunoglobulin IgE has a critical role in triggering the allergic cascade, and IL-4 is the most important cytokine in IgE synthesis because of its ability to induce immunoglobulin isotypes to switch from IgM to IgE. It is now widely accepted that airway inflammation is the basis of airway hypersensitivity and that at least 3 inflammatory cytokines are involved in the pathogenesis of allergy. The first is dependent on IL-4 and mast cells, the second is dependent on IL-5 and eosinophils, and the third is mediated by IL-13 [24].

Combining the allergen with adjuvant alum facilitates...
induction of asthma in mouse models [25] and promotes a strong antibody response or other effects that could influence allergic reactions. However, mice can still be sensitized without adjuvant alum before intranasal challenge with allergen to assess the characteristics of airway responses such as reactivity to aerosolized methacholine, infiltration of airway tissues with eosinophils, and bromodeoxyuridine-positive cell counts in the airway epithelium [26]. In the present study, we did not perform intraperitoneal sensitization without adjuvant alum hydroxide. However, intranasal or intraperitoneal exposure in the absence of aluminium hydroxide warrants further study.

The clinical symptoms of allergic asthma are characterized by airway hyperresponsiveness to specific allergenic stimulation, chronic eosinophil infiltration, elevated serum IgE levels, and excessive mucus production. In the current study, levels of inflammatory leukocytes (neutrophils and eosinophils) and cytokines (IL-4, IL-5, and IL-13) were significantly increased after sensitization and challenge with *T. putrescentiae*. Further observations of variations in lung pathology and gene expression reveal significant upregulation of Tg2-related cytokines (IL-4, IL-5, and IL-13) and eosinophilic infiltration in lung tissue. The inflammatory mediators of allergic diseases are characterized by increased levels of activated Th2 lymphocytes, mast cells, and eosinophils within the tracheal and bronchial mucosa [27,28].

Liu et al [29] demonstrated that intraperitoneal sensitization using *Dermatophagoides pteronyssinus* enhanced Th2-based allergenicity and that immunotherapy with fungal immunomodulatory peptide enhanced Th11-based immunogenicity and reduced Th2-based allergenicity. While Th22 cytokines trigger an isotype switch towards the production of IgE and IgG1, the Th11 cytokine IFN-γ induces production of IgG2α by B lymphocytes. Th11 cells secrete IFN-γ and promote cellular immunity and production of IgG2α. In contrast, Th12 cells secrete IL-4 and induce IgE antibody production, thereby reciprocally regulating Th1 and Th2 responses. Daily intranasal exposure to crude house dust mite extracts elicits Th2-type sensitization, eosinophilic airway inflammation, and airway hyperresponsiveness via a granulocyte-macrophage colony-stimulating factor–mediated mechanism in mice [30]. However, the effects of intranasal exposure to storage mite remain unclear and should be further investigated to clarify the impact of respiratory mucosal exposure to *T. putrescentiae* on the generation of allergic inflammatory responses.

In the present study, IL-6 and IL-17F are expressed in lung tissues, as are inflammatory leukocytes and neutrophils in BALF after sensitization and challenge with *T. putrescentiae*. Similar results for overexpression of IL-17F and increased neutrophil levels show an additive effect on IgE-induced allergic inflammatory responses in a mouse model of asthma [31]. IL-17F is involved in the stimulation of bronchial epithelial cells to induce IL-6, IL-8, growth-related oncogene α, and intracellular adhesion molecule 1 [32]. Sequentially, bronchial epithelial cells secrete a variety of mediators and proinflammatory cytokines and chemokines that play a key role in the recruitment of inflammatory cells (e.g., lymphocytes, neutrophils, and eosinophils) into the interstitial and alveolar spaces. These findings suggest that IL-17F can cause and perpetuate airway inflammation. Therefore, blocking overexpression of IL-17F could be a suitable therapeutic strategy for modulating airway inflammatory diseases.

The World Health Organization and International Union of Immunological Societies Allergen Nomenclature Sub-committee (www.allergen.org) lists 23 groups of mite allergens. At least 20 IgE-binding allergenic components of *T. putrescentiae* have been distinguished. To date, few major allergens have been identified in *T. putrescentiae* [33]. As for the prevalence of IgE binding, the most important components are the 16-kDa group 2 allergens, which are also the most ubiquitous and dominant [33,34]. Tyr p 3 plays a key role in allergic reactions. Although it has been shown to process enzymatic activity [15], the effects of Tyr p 3 on sensitization and pathogenesis have not yet been clarified. No previous animal model of *T. putrescentiae*-induced allergic inflammation has evaluated the effectiveness of therapy in further investigations.

Mouse asthma models are the most popular approach to modeling allergic responses in the airway. Mice exposed to 10-70 µg of the indoor mold *Penicillium chrysogenum* by involuntary aspiration were observed to undergo dose-dependent increases in allergic asthma parameters such as eosinophilic infiltration, IL-5 levels, total IgE levels, and severity of histopathologic lesions [35]. It has been suggested that molds differ in terms of the threshold at which they induce asthma [35]. Our results showed that the induction threshold of *T. putrescentiae* extracts was >40 µg and that this level increased dose-dependent allergic asthma-like responses in mice. Depending on the dose of antigen used, the inflammatory response to allergen challenge in sensitized mice usually results in an extensive influx of inflammatory cells (e.g., eosinophils or neutrophils) into the airways. The development of human allergic diseases depends on 2 critical factors, exposure levels and sensitization thresholds, which are unknown for storage mite allergens, including *T. putrescentiae*. Our findings suggest a threshold dose for the induction of allergic responsiveness to *T. putrescentiae*. Both *T. putrescentiae* and other dust mites can play an important role in airway inflammation and the development of systemic allergic diseases.

In conclusion, we designed a mouse model of allergic asthma to elucidate the mechanisms involved in sensitization and challenge with storage mites. Physiologic variations and immune responses after intraperitoneal sensitization and intratracheal challenge with *T. putrescentiae* induced airway inflammation in BALB/c mice. In terms of immune and clinical parameters, our model closely reflects the symptoms associated with allergic asthma in humans and can be used to evaluate the effectiveness of therapy in the future.

Acknowledgments

This study was supported by grant (TCVGH-NCHU997611) from Taichung Veterans General Hospital and grant (NSC97-2320-B010-008-MY3) from the National Science Council.
of Taiwan. The authors sincerely appreciate the assistance of the Biostatistics Task Force of Taichung Veterans General Hospital, Taichung, Taiwan.

References

Manuscript received February 24, 2012; accepted for publication July 26, 2012.

Jaw-Ji Tsai
Department of Medical Research, Taichung Veterans General Hospital
#160, Section 3, Chung-Kang Road Taichung, Taiwan, ROC 40705
E-mail: jawji@vghtc.gov.tw