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 Abstract

Background and Objective: Patients with persistent asthma have different inflammatory phenotypes. The electronic nose is a new technology 
capable of distinguishing volatile organic compound (VOC) breath-prints in exhaled breath. The aim of the study was to investigate 
the capacity of electronic nose breath-print analysis to discriminate between different inflammatory asthma phenotypes (eosinophilic, 
neutrophilic, paucigranulocytic) determined by induced sputum in patients with persistent asthma. 
Methods: Fifty-two patients with persistent asthma were consecutively included in a cross-sectional proof-of-concept study. Inflammatory 
asthma phenotypes (eosinophilic, neutrophilic and paucigranulocytic) were recognized by inflammatory cell counts in induced sputum. 
VOC breath-prints were analyzed using the electronic nose Cyranose 320 and assessed by discriminant analysis on principal component 
reduction, resulting in cross-validated accuracy values. Receiver operating characteristic (ROC) curves were calculated.
Results: VOC breath-prints were different in eosinophilic asthmatics compared with both neutrophilic asthmatics (accuracy 73%; P=.008; 
area under ROC, 0.92) and paucigranulocytic asthmatics (accuracy 74%; P=.004; area under ROC, 0.79). Likewise, neutrophilic and 
paucigranulocytic breath-prints were also different (accuracy 89%; P=.001; area under ROC, 0.88). 
Conclusion: An electronic nose can discriminate inflammatory phenotypes in patients with persistent asthma in a regular clinical setting. 
ClinicalTrials.gov identifier: NCT02026336.
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 Resumen

Antecedentes: Pacientes con asma persistente tienen diferentes fenotipos inflamatorios bronquiales. La nariz electrónica es una nueva 
tecnología capaz de distinguir compuestos orgánicos volátiles (VOCs), huellas olfatorias del aire exhalado. El objetivo de este estudio fue 
investigar la capacidad que tiene la nariz electrónica de discriminar las huellas olfatorias en los diferentes fenotipos bronquiales de asma 
determinados por el esputo inducido (eosinofílicos, neutrofílicos, paucigranulocíticos) en pacientes con asma persistente. 
Método: Cincuenta y dos pacientes con asma persistente fueron incluidos en un estudio transversal. Los fenotipos inflamatorios asmáticos 
fueron determinados a través de recuento de células inflamatorias del esputo inducido. Los VOCs fueron analizados a través de una nariz 
electrónica Cyranose 320TM y evaluados por un análisis de discriminación de componentes principales, resultando en valores de precisión 
con validación cruzada. Se calcularon las características operativas del receptor (ROC).
Resultados: Los VOCs de los asmáticos eosinofílicos fueron diferentes a los neutrofílicos (precisión 73%; p= 0.008; área bajo ROC 0.92) 
y de los pacientes paucigranulocíticos (precisión 74%; p= 0.004; área bajo ROC 0.79). Del mismo modo, las huellas olfatorias entre los 
neutrofílicos y paucigranulocíticos eran diferentes (precisión 89%; p= 0.001; área bajo ROC 0.88).  



Plaza V, et al.

J Investig Allergol Clin Immunol 2015; Vol. 25(6): 431-437 © 2015 Esmon Publicidad

432

Introduction

Chronic airway inflammation is a key pathogenic 
mechanism in asthma. Yet, there is significant variability in 
the inflammatory phenotype across individuals. In fact, several 
guidelines already recommend tailored management approaches 
for patients with different inflammatory phenotypes, especially 
those with severe, refractory asthma [1,2]. This is particularly 
relevant with the emergence of a variety of biological anti-
inflammatory therapies targeting both eosinophilic [3,4] and 
noneosinophilic asthma phenotypes. 

Two noninvasive methods are commonly used in clinical 
practice to assess airway inflammation in asthma: quantification 
of exhaled nitric oxide (FeNO) and analysis of induced sputum. 
Measuring FeNO is an inexpensive, simple technique that 
provides readily available readouts, but it is not informative 
of the specific inflammatory profile present. Induced sputum 
analysis can certainly assess the specific airway inflammatory 
phenotype present [5,6], but it is time-consuming, costly, and 
requires technical expertise. Furthermore, 10% of patients 
fail to provide adequate samples. Therefore, there is a lack 
of methods able to classify asthmatic individuals according 
to their airway inflammatory profile in an easy, cost-effective 
fashion suitable for generalized use in regular clinical practice.

The electronic nose (e-nose) is an emerging technology that 
detects volatile organic compounds (VOCs) in exhaled gas. 
It uses an array of sensors that react with different VOCs and 
generate a specific “breath-print” for each individual [7]. The 
exhaled gas contains a complex mix of VOCs derived from 
various metabolic and inflammatory pathways in the lung. 
Previous studies have shown that some respiratory diseases, 
including lung cancer, malignant mesothelioma, pulmonary 
arterial hypertension, chronic obstructive pulmonary disease 
(COPD), and asthma, are associated with specific breath-prints 
that can be detected by an e-nose [8-12]. Here we hypothesized 
that the breath-print of asthmatic individuals may reflect 
their airway inflammatory profile, and that the e-nose may 
therefore qualify as a novel tool of potential clinical value for 
the inflammatory phenotyping of asthma. Accordingly, this 
proof-of-concept study sought to use an e-nose to compare 
VOC profiles generated from different asthma inflammatory 
phenotypes.

Methods

Study Design and Participants

This was a cross-sectional study designed to analyze the 
concordance of sputum inflammatory phenotypes with e-nose 

Conclusión: La nariz electrónica puede discriminar los fenotipos inflamatorios bronquiales en los pacientes con asma persistente en un 
entorno clínico regular. ClinicalTrials.gov: NCT02026336.
Palabras clave: Asma. Nariz electrónica. Inflamación. Compuestos orgánicos volátiles.

VOC profiles. Fifty-two adults with persistent asthma, as per 
the Global INitiative for Asthma (GINA) criteria [13], were 
consecutively enrolled from the outpatient clinic at the asthma 
unit of our institution, a tertiary referral university hospital, 
between January and December 2013. All the patients had a 
positive bronchodilator test or a daily peak expiratory flow 
variability greater than 20%, or a positive methacholine 
challenge test documented in their case history. Patients were 
excluded if they had a respiratory tract infection or asthma 
exacerbation within 30 days prior to inclusion or if they 
were receiving oral corticosteroids or immunosuppressive 
treatments. Smoker and ex-smokers were included. Patients 
who had stopped smoking more than 12 months earlier were 
considered ex-smokers. Only patients with good-quality 
sputum were selected.

Measurements

The tests were all performed during a single visit in the 
morning. Patients stopped their medications 10 hours before 
the visit. In the 3 hours before the visit, they rested, and did 
not smoke, eat, or drink. The following tests were performed in 
the order shown: 1) the asthma control test using the validated 
Spanish version [14], 2) allergy skin prick tests to usual local 
allergens [15], 3) FeNO testing, 4) e-nose VOC profiles, 5) 
sputum induction and processing, 6) forced spirometry, and 7) 
venipuncture for total serum IgE. FeNO levels were measured 
using a chemiluminescence analyzer (NO Vario Analyser, 
FILT GMBH) at a flow rate of 50 mL/s, and, following the 
recommendations of the American Thoracic Society and the 
European Respiratory Society [16], we used the mean of 3 
measurements. For the e-nose VOC profiles, exhaled gas was 
collected as described before [8,10,17-18]. Briefly, patients 
breathed through a mouthpiece into a 2-way nonrebreathing 
valve (Hans Rudolph 2700, Hans Rudolph) with an inspiratory 
VOC filter (Compact Air Plus, North) and an expiratory silica 
reservoir (replaced after each patient) to dry the expired air. 
Expiratory air was collected in a 10-L Tedlar bag that was 
flushed with ambient air after each use by filling and emptying 
the bag twice. After 10 minutes, which is the time needed to 
verify that all the sensors were within the reference range 
specified by the manufacturer, the bag was connected to the 
e-nose device (Cyranose 320, Smith Detections) and fitted 
with a 32-organic polymeric nano-composite sensor array for 
5 minutes. Changes in the nano-sensor electrical resistance 
generated a breath-print VOC profile. The measurement is 
based on a resistance variation in each sensor when exposed 
to a VOC mixture. The differential responses across the array 
(resistance shifts) are presented as patterns and analyzed by 
pattern recognition algorithms [18]. All breath samples were 
collected in the same room. Sputum induction and processing 
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Table 1. Demographic Characteristics of Patients Who Completed 3 Years of Follow-up 

 Eosinophilic  Neutrophilic Paucigranulocytic P 
 Phenotype (n=24) Phenotype (n=10) Phenotype (n=18) Value

Age, mean (SD), y 47.8 (16.4) 54.8 (18.0) 42.9 (10.6) NS
Sex, % female 67 40 61 NS
BMI, mean (SD), kg/m2 26.1 (4.3) 25.7 (4.0) 27.2 (6.8) NS
Active smokers, % 12 10 5 NS
Ex-smokers, % 30 30 23 NS
IgE, mean (IQR), IU/mL 148 (404.6) 45.25 (100.7) 238.5 (565.58) NS
Patients with positive skin prick test, % 71 60 83 NS
Patients with ACT ≥20, % 58 60 78 NS
ACT score, mean (SD) 19.8 (4.4) 20.9 (5.9) 20.9 (4.5) NS
FEV1, mean (SD), % of reference values  86.9 (19.2) 78.8 (17.9) 89.9 (14.9) NS
FEV1/FVC, mean (SD) 69.4 (15.2) 65.5 (13.1) 71.5 (10.6) NS
FeNO, median (IQR), ppb 32 (38.75) 25 (26) 21.5 (37.25) NS
Patients with beclomethasone  
(or equivalent ICS) ≥800 µg/d, %  29 30 33 NS

Abbreviations: ACT, asthma control test; BMI, body mass index; FeNO, fractional exhaled nitric oxide; FEV1, forced expiratory volume in the first second; 
FVC, forced vital capacity; ICS, inhaled corticosteroid; IQR, interquartile range; NS, nonsignificant.

was performed as previously described [19,20]. Briefly, mucus 
plugs were manually selected and weighed, incubated (for 15 
minutes at room temperature) in 4 times the weight (in mL) 
of the selected plug (in mg) in 0.1% dithiothreitol (DTT) 
(Calbiochem), washed with 4 times the plug weight (in mL) 
in Dulbecco’s PBS, and gravity-filtered through a 41 μm–pore 
nylon net filter (Millipore). After DTT homogenization, each 
specimen was aliquoted into 2 parts of equal volume. Total 
cell counts were performed using a Neubauer hemocytometer. 
Visually identifiable squamous epithelial cells were not 
counted or included in the total cell count. Samples that did 
not produce adequate sputum cell numbers (<1000 × 106 cell/g) 
were excluded. Cell viability was determined by light 
microscopic assessment using trypan blue exclusion staining. 
After centrifuging the cell preparation, we obtained cell pellet 
and supernatant. The cell pellet was used for the differential cell 
count (macrophages, eosinophils, neutrophils, lymphocytes, 
and bronchial epithelial cells) with Wright-Giemsa staining. 
Differential leukocyte analysis of nonsquamous cells (Diff-
Quik stained) was performed on a minimum of 400 cells. 
Differential cell counts were expressed as a percentage of total 
nucleated nonsquamous cells [19].The inflammatory asthma 
phenotypes were classified as neutrophilic (>61% neutrophils), 
eosinophilic (>3% eosinophils), or paucigranulocytic (<61% 
neutrophils and <3% eosinophils) according to previous 
studies [21]. Forced spirometry (Datospir-500, Sibelmed SA) 
was performed according to the guidelines of the Spanish 
Respiratory Society (SEPAR) [22], using reference values 
from a Mediterranean population [23]. 

Data Analysis

Categorical variables are expressed as absolute and 
relative frequencies and quantitative variables as mean and 

SD. Groups were compared using analysis of variance and 
the χ2 or Fisher exact test as appropriate. A P value of less 
than .05 was considered statistically significant. Breath-print 
data were analyzed using a pattern-recognition application 
of the MATLAB software (v.R2012a), and were represented 
by logarithmic regression as single- or 2-dimensional graphs 
following previously published algorithms [10,17]. Raw data 
were first reduced by principal component analysis (PCA) to 
3 principal factors. These PCA factors entered a univariate 
ANOVA followed by a post-hoc least significant difference 
test. Linear canonical discriminant analysis, using the PCA 
factors, was then performed to classify patients into categories. 
Based on the differentiating PCA factors, a discriminating 
function was calculated that best distinguished the different 
inflammatory phenotypes. The accuracy of the model is 
defined as the percentage of correctly classified patients 
using induced sputum results as the reference. It was obtained 
using the leave-one-out method [17]. In this method, the 
discriminant function is trained using all subjects minus one, 
and then the function is tested with the 4 samples (the PCA 
factors) from the “left-out” individual. If 3 of the samples are 
correctly allocated, the discriminant function is considered 
to be valid for this individual. The process is repeated for all 
individuals and results are used to calculate the cross-validated 
accuracy percentage value. Sensitivity, specificity, and positive 
predictive and negative predictive values were calculated 
for the 3 inflammatory phenotypes. A receiver operating 
characteristics (ROC) curve was generated using the results 
of the discriminant function and combining all the samples 
of 1 individual. If one tested individual (true ‘class 1’) has 3 
samples allocated to ‘class 1’ by the identifier and 1 sample 
allocated to ‘class 0’, the true positive rate is considered to be 
0.75. The area under the ROC curve (AUC) was calculated 
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using the pairs of X, Y values and a trapezoidal approximation 
for the space between points.

Ethics Statement 

The study was conducted in accordance with the principles 
of the Declaration of Helsinki (18th World Medical Assembly, 
1964) and was approved by the clinical research ethics committee 
at our institution (approval number, IIBSP/10/122/1161). The 
participants signed an informed consent form to participate in 
this study and all personal identification data were anonymized. 
ClinicalTrials.gov identifier: NCT02026336.

Results

Characterization of Participants

Table 1 presents the main demographic, clinical, and 
functional characteristics of the participants. According to the 
induced sputum results (Table 2), 24 patients (46%) had an 
eosinophilic phenotype, 10 (19%) a neutrophilic phenotype, 
and 18 (35%) a paucigranulocytic phenotype. Age, sex, body 
mass index (BMI), smoking status, serum IgE concentration, 
proportion of individuals positive to the standard skin prick 
test series, response to the asthma control test questionnaire, 
spirometry values, and FeNO or inhaled corticosteroid usage 
was similar in the 3 groups (Table 1). 

Table 2. Inflammatory Cell Counts Observed in the 3 Inflammatory Groups 

 Eosinophilic  Neutrophilic Paucigranulocytic P 
 Phenotype (n=24) Phenotype (n=10) Phenotype (n=18) Value

Lymphocytes, mean (SD), % 0.8 (0.6) 0.9 (0.5) 1.0 (0.6) .516
Macrophages, mean (SD), % 56.4 (17.8) 19.2 (9.3) 61.1 (20.0) <.001
Eosinophils, mean (SD), % 13.2 (14.0) 1.3 (0.9) 0.9 (0.6) <.001
Neutrophils, mean (SD), % 29.4 (16.4) 77.3 (8.1) 36.5 (20.4) <.001
Squamous cell, median (IQR), % 7.21 (5.87) 3.17 (2.38) 4.53 (3.78) .064
Cell concentration, mean (SD), x106 cell/g 3.26 (2.16) 3.96 (1.72) 3.5 (1.74) .682

Breath-Print Analysis

PCA of the e-nose data showed that the breath-prints of the 
3 inflammatory asthma phenotypes were different. As shown 
in Figure 1, plotted breath-prints from neutrophilic versus 
paucigranulocytic phenotypes were clearly distinct on visual 
assessment (panel A) and canonical discriminant analysis 
showed a cross-validated accuracy of 89% (P=.001). Likewise, 
the breath-prints of eosinophilic versus neutrophilic phenotypes 
(panel B), and eosinophilic versus paucigranulocytic (panel 
C), were also fairly distinguishable, with accuracy values 
of 73% (P=.008) and 74% (P=.004), respectively. Finally, a 
comparison of eosinophilic versus noneosinophilic asthmatics 
(ie, neutrophilic plus paucigranulocytic phenotypes) showed 
a reduced but still significant cross-validated accuracy (61%, 
P=.008).

Table 3 presents the results of the ROC analysis, as well as 
the sensitivity, specificity, and positive and negative predictive 
values, and the AUC for the 3 breath-print comparisons of the 
3 inflammatory asthma phenotypes studied.

Discussion
The results of the proof-of-concept study presented here 

show that different inflammatory asthma phenotypes based on 
induced sputum analysis can be readily recognized by their 
breath-prints using an e-nose device. 

Figure. Comparison of e-nose breath-prints between asthma inflammatory phenotypes defined by differential leukocyte counts in induced sputum. 
The graphs depict 2-dimensional principal component analysis plots showing breath-print discrimination between patients with A) neutrophilic vs 
paucigranulocytic phenotypes (accuracy 89%; P=.001; AUROC, 0.88); B) neutrophilic vs eosinophilic phenotypes (accuracy, 73%; P=.008; AUROC, 
0.92), and C) eosinophilic vs paucigranulocytic phenotypes (accuracy 74%; P=.004; AUROC, 0.79). Axes represent discriminative composite principal 
factors. Symbol legends indicate phenotype representating in each plot. There are 4 samples represented for each patient. AUROC indicates area under 
the receiver operating characteristics curve.
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Prior studies have provided evidence supporting the use of 
the e-nose to aid in the diagnosis of asthma by discriminating 
asthmatics from healthy controls (100% accuracy) [17], asthma 
from COPD (96% accuracy) [10], and asthma with fixed 
airflow obstruction from COPD (88% accuracy) [24]. It has 
also been seen to be more accurate than FeNO measurements 
in this diagnostic setting, with an accuracy of 95.8% [25]. 
Overall, these previous reports suggest that e-nose VOC 
analysis holds promise as an accurate, noninvasive procedure 
for the diagnosis of different respiratory diseases, and may 
potentially serve to discriminate between different airway 
inflammatory phenotypes [26]. 

Our results indicate that e-nose VOC analysis can reliably 
discriminate airway inflammatory phenotypes in asthma 
patients with similar clinical manifestations. This observation 
is in line with some previous reports. For instance, Ibrahim 
et al [27] used gas chromatography-mass spectrometry in a 
smaller number of patients (n=18) and reported an accuracy 
of 83% for distinguishing eosinophilic from noneosinophilic 
asthma phenotypes and of 72% for separating neutrophilic from 
non-neutrophilic phenotypes; it should be noted, however, that 
paucigranulocytic patients were not included. More recently, 
Wagener et al [28] used the e-nose to discriminate breath-prints 
from 27 patients with eosinophilic versus noneosinophilic 
asthma with an accuracy of 85% and an AUC of 99% (95% 
CI, 0.9752-1). Finally, van der Schee et al [29] found that 
e-nose patterns predicted response to corticosteroids in 25 
asthma patients with greater accuracy (mean [SD] AUC, 0.883 
[0.16]; P=.008) than sputum eosinophil counts (0.610 [0.29]; 
P=.441) or FeNO measurements (0.545 [0.28]; P=.751). All 
in all, these and our results indicate that the e-nose is a simple, 
easy-to-use technology that can identify inflammatory asthma 
phenotypes in the clinical setting, as has already been suggested 
for COPD [30-31]. 

The identification of specific immunological pathways [1], 
now termed endotypes [32], is particularly relevant in the 
management of patients with difficult-to-treat asthma [6] 
because it can guide personalized treatment [33]. For instance, 
several recent studies [7] and systematic reviews [5] have 
shown that therapeutic strategies based on eosinophilic 
counts in induced sputum were highly effective in preventing 
exacerbations in difficult-to-treat asthma. However, the 
analysis of induced sputum is not currently recommended 
in clinical practice guidelines [13] because it is a complex, 

time-consuming technique and requires trained personnel. 
Additionally, assessable samples are not always obtained, and 
special care must be taken in patients with uncontrolled or 
severe asthma. Our data support that the theory that the e-nose 
may be a simple alternative to identify airway inflammatory 
phenotypes in clinical practice.

The inclusion of phenotypically well-characterized asthma 
patients (eosinophilic, neutrophilic, and paucigranulocytic) and 
the use of an e-nose in a regular clinical practice setting are 
clear strengths of our study. It has, however, some limitations. 
First, because it was a proof-of-concept study, we investigated 
a relatively small number of patients in a single center. Further 
investigations are needed in larger, multicenter asthma 
cohorts. Second, we did not investigate the reproducibility 
of our results. Nevertheless, previous studies using the same 
methodology have reported good reproducibility with the same 
e-nose device [10]. Third, smoking and inhaled corticosteroid 
treatment may theoretically alter VOC patterns. However, in 
our study there were no differences between groups regarding 
the proportion of smokers or patients receiving high doses of 
inhaled corticosteroids. In addition, the e-nose was able to 
differentiate VOC patterns despite these potential confounding 
factors. And fourth, unlike a recent study [27], we did not 
investigate which VOC species formed the e-nose pattern, 
and our data analysis was limited to a discriminant analysis 
approach. Future studies may use more advanced data analysis 
techniques suitable for the e-nose data complexity, such as 
Support Vector Machines [34] or Back Propagation Neural 
Networks [35] to immediately differentiate between different 
asthma phenotypes in a clinical setting.

The use of an e-nose in a regular clinical setting can reliably 
discriminate different inflammatory asthma phenotypes in 
patients with persistent asthma.
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Table 3. Receiver Operating Characteristics Analyses for the Comparisons Between Breath-Prints of the 3 Asthma Inflammatory Phenotypes Studied 

 Neutrophilic vs  Neutrophilic vs Eosinophilic vs 
 Paucigranulocytic  Eosinophilic Paucigranulocytic 
 Phenotype Phenotype Phenotype

Cross-validation accuracy, % 89 (P=.001) 73 (P=.008) 74 (P=.004)
Sensitivity 0.94 0.6 0.55
Specificity 0.80 0.79 0.87
Positive predictive value 0.89 0.54 0.61
Negative predictive value 0.72 0.83 0.68
Area under the receiver operating characteristic curve 0.88 0.92 079
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