SUPPLEMENTAL MATERIAL

Data analysis according to the Rasch model

In contrast to the classical psychometric theory, analysis according to the Rasch analysis model

allows a conjoint measurement, where the person and estimated values on items are expressed

in the same units and located on the same construct continuum (1,2). The model assumes that

the probability of an affirmative answer on an item is a logistic function of the relative distance

between the item location and the person location on a linear scale (1). The estimates of person

parameters are regarded as measures of unobservable latent traits and the bias standard error of

measurement (3). In this study, the person parameter represents the level of disease activity and

the item parameter the risk of experiencing consequences related to C1-INH-HAE. According to

the likelihood ratio test (p < 0.001), the partial credit model for polytomous items was used (4).

Data were considered to fit the Rasch model if the probability of the Chi-square item trait

interaction test was not significant with Bonferroni correction (p<0.05/number of items) and

values of the item and person fit residual followed a standard normal distribution with a mean of

0 and a standard deviation of 1. Besides, items with fit residuals higher than 2.5 are deemed not

to fit and may reflect another construct. Items with residuals lower than -2.5 are redundant..

Disordered thresholds were corrected by collapsing adjacent categories (5).

Reliability, based on Person Separation Index (PSI) values, was deemed as satisfactory if higher

than 0.7 (6). Items were assumed to have local independence when standardised residual

correlations were lower than 0.3 (7). Unidimensionality was checked through principal

components of the residuals: the difference in scores between positive and negative-loading

items was assessed with independent t-tests, measures with a lower limit of binomial confidence

interval (CI) < 0.05 were considered unidimensional (8).

2

DIF occurs when different groups respond in a different manner to an individual item, despite

equal levels of the underlying construct (1). Items were judged to be free of bias if the analysis

of variance for DIF analysis was not significant using Bonferroni correction. If two or more

items presented DIF, the top-down purification approach was used (9) by selecting two subtests,

one with items with bias (impure items) and the other without bias (pure items), and checking

the DIF again. The factors used for DIF analysis were gender, age (split by median, 40 years),

family C1-INH-HAE history and type. DIF was not analysed by country due to insufficient

sample size in some countries.

Rasch analysis results:

Table S1 shows information about the initial HAE-AS items. The initial Rasch analysis revealed

misfitting items which lead to modifications in the model (Table S2). Due to disordered

thresholds, the response scale for virtually all items was simplified. Two items with reported

estimates that gave distorted pictures of the data were removed: "treatment maintenance in the

last 6 months" (fit residual=4.857) and "frequency of attacks in the last 6 month" (fit residual=-

4.778). The final analysis with 12 items provided a good fit to the Rasch model, with a PSI of

0.748, absence of local dependency and unidimensionality (Table S2). The item fit statistics had

suitable values (Table S3). Items "Days not attending school/work due to C1-INH-HAE in the

last 6 months" and "General health in the last month" presented DIF by age, however the bias

was filtered out under the top-down purification approach. All other items had no significant

DIF, which suggests they were free of bias for the analysed groups. The threshold distribution

presented a mean value of -1.924 (SD=1.318), and a few items measured lower levels of disease

severity (Figure S1).

J Investig Allergol Clin Immunol 2021; Vol. 31(3)

References (Supplemental material)

- 1. Tennant A, Conaghan PG. The Rasch measurement model in rheumatology: what is it and why use it? When should it be applied, and what should one look for in a Rasch paper? Arthritis Rheum. 2007 Dec 15;57(8):1358–62.
- 2. Andrich D. Rasch Models for Measurement. Berverly Hills: Sage Publications; 1988.
- 3. Christensen KB, Kreiner S, Mesbah M. Rasch models in health. London: John Wiley & Sons; 2013.
- 4. Masters GN. A Rasch model for partial credit scoring. Psychometrika. 1982;47(2):149–74.
- 5. Linacre JM. Category, Step and Threshold: Definitions & Disordering. Rasch Meas Trans. 2001;15(1):794.
- 6. Prior N, Remor E, Pérez-Fernández E, Caminoa M, Gómez-Traseira C, Gayá F, et al. Psychometric field study of hereditary angioedema quality of life questionnaire for adults: HAE-QoL J Allergy Clin Immunol Pract. 2016 May-Jun;4(3):464-473.e4. doi: 10.1016/j.jaip.2015.12.010. Epub 2016 Mar 8.
- 7. Covic T, Pallant JF, Tennant A, Cox S, Emery P, Conaghan PG. Variability in depression prevalence in early rheumatoid arthritis: a comparison of the CES-D and HAD-D Scales. BMC Musculoskelet Disord. 2009;10:18.
- 8. Tennant A, Pallant J. Unidimensionality matters!(A tale of two Smiths?). Rasch Meas Trans. 2006;20:1048–51.
- 9. Tennant A, Pallant J. DIF matters: A practical approach to test if Differential Item Functioning makes a difference. Rasch Meas Trans. 2007;20:1082–4.

J Investig Allergol Clin Immunol 2021; Vol. 31(3) doi: 10.18176/jiaci.0479

Table S1. Initial item frequency of the clinical activity scale for hereditary angioedema with C1-inhibitor deficiency (HAE-AS).

Item (response)		N	%	Item (response)		N	%
	No attacks	100	34.48		0 visits	149	51.38
1. Peripheral	1-5 attacks	99	34.14	8. Emergency	1-5 visits	70	24.14
attacks in the last 6	6-10 attacks	35	12.07	visits in the last	6-10 visits	16	5.52
months $(0-4)$	11-20 attacks	27	9.31	6 months (0-5)	11-15 visits	5	1.72
	>20 attacks	20	6.90	o monuns (o s)	15-20 visits	5	1.72
	Missing	9	3.10		>20 visits	5	1.72
	No attacks	102	35.17		Missing	40	13.79
	1-5 attacks	104	35.86	Psychological	No	248	85.52
				and/or			
2. Abdominal		34	11.72	psychiatric			
attacks in the last 6	6-10 attacks			treatment in the	Yes	31	10.69
months $(0-4)$				last 6 months (0-			
				1)			
	11-20 attacks	23	7.93		Missing	11	3.79
	>20 attacks	17	5.86	10. Days not	0 day	112	38.62
	Missing	10	3.45	attending	1 day	15	5.17
	No attacks	206	71.03	school/work due	2-3 days	24	8.28
3. Facial attacks in	1-5 attacks	65	22.41	to C1-INH-HAE	4-5 days	26	8.97
the last 6 months	6-10 attacks	3	1.03	in the last 6	6-15 days	43	14.83
(0-4)	11-20 attacks	4	1.38	months (0-5)	>15 days	13	4.48
	>20 attacks	2	0.69		Missing	57	19.66
	Missing	10	3.45		Excellent	19	6.55
4. Genital attacks	No attacks	205	70.69	11. General	Very good	37	12.76
in the last	1-5 attacks	56	19.31	health in the last	Good	125	43.10
6 months	6-10 attacks	9	3.10	month (1-5)	Fair	87	30.00
(0-4)	11-20 attacks	6	2.07		Poor	17	5.86
(0 1)	>20 attacks	3	1.03		Missing	5	1.72
	Missing	11	3.79	12. Impairment	Not at all	104	35.86
	No attacks	230	79.31	on everyday	A little bit	68	23.45
5. Upper airway	1-5 attacks	43	14.83	work and	Moderately	45	15.52
attacks in the last 6	6-10 attacks	4	1.38	activities due to	Quite a bit	51	17.59
months (0-4)	11-20 attacks	1	0.34	pain in the last	Extremely	17	5.86
months (0 1)				month (1-5)	·		
	>20 attacks	3	1.03		Missing	5	1.72
	Missing	9	3.10	13. Maintenance	No	136	46.90
	No attacks	258	88.97	treatment last 6 months (1-5)	Yes	146	50.34
6. Other location	1-5 attacks	16	5.52	(10)	Missing	8	2.76
attacks last 6	6-10 attacks	3	1.03		No attacks	52	17.93
months (0-4)	11-20 attacks	4	1.38	14. Attack	1-5 attacks	113	38.97
	>20 attacks	1	0.34	frequency last 6	6-10 attacks	38	13.10
	Missing	8	2.76	months (0-4)	11-20 attacks	33	11.38
	No attacks	162	55.86		>20 attacks	44	15.17
7. Number of	1-5 attacks	87	30.00		Missing	10	3.45
treated attacks last	6-10 attacks	13	4.48		iviissiiig	10	J.TJ
6 months (0-4)	11-20 attacks	8	2.76				
o monuno (o 1)	>20 attacks	17	5.86				
	Missing	3	1.03				
-	Mineetta	<u> </u>	1.03				

J Investig Allergol Clin Immunol 2021; Vol. 31(3) doi: 10.18176/jiaci.0479

Table S2. Fit of the HAE-AS scale to the Rasch model.

		Ideal values	Initial	Final analysis	
		ideal values	analysis		
Number of items			14	12	
Item residual	Mean	0.0	-0.772	-0.810	
item residuai	SD	1.0	2.409	0.886	
Person residual	Mean	0.0	-0.315	-0.327	
rerson residuai	SD	1.0	0.783	0.918	
	Value		172.284	59.318	
Chi-square	Prob.	>0.05/number	< 0.001	0.127	
		of items	\(\delta\) .001	0.127	
PSI		>0.70	0.808	0.748	
Unidimensional test		(I CI <0.05)	12.50	6.97	
CI test Binomial		(LCI <0.05)	(0.100-0.150)	(0.044-0.095)	

SD: Standard deviation; PSI: Person separation index; Prob. probability; CI: Confidence interval; LCI: Lower confidence interval.

Table S3. Individual item fit residual for final Rasch analysis of HAE-AS scale, ordered by item location.

	Location	Standard	Fit	Chi-	
Item (response categories)		Error	Residual	Square	Probability
				(df=4)	
6. Other location attacks in the last 6 months (0-2)	1.768	0.203	-0.403	1.574	0.814
3. Facial attacks in the last 6 months (0-2)	1.198	0.144	-0.027	0.947	0.918
5. Upper airway attacks in the last 6 months (0-2)	1.068	0.153	-0.823	3.082	0.544
9. Psychological and/or psychiatric treatment in	0.606	0.196	-0.566	4.031	0.402
the last 6 months (0-1)					
8. Emergency visits in the last 6 months (0-2)	0.407	0.137	-0.841	5.948	0.203
4. Genital attacks in the last 6 months (0-3)	0.404	0.108	-1.286	2.979	0.561
7. Treated attacks in the last 6 months (0-2)	-0.305	0.114	-0.885	6.981	0.137
10. Days not attending school/work due to C1-	0.770	0.092	-2.38	9.479	0.05
INH-HAE in the last 6 months (0-3)	-0.770				
12. Impairment on everyday work and activities	0.065	0.085	-0.072	0.200	0.002
due to pain in the last months (0-3)	-0.865			0.398	0.983
2. Abdominal attacks in the last 6 months (0-3)	-0.876	0.087	-1.974	8.334	0.08
1. Peripheral attacks in the last 6 months (0-3)	-0.975	0.085	-1.35	1.625	0.804
11. General health in the last months (0-3)	-1.660	0.1	0.892	13.94	0.007

Figure S1. Item-person threshold distribution in a logit scale.

LOCATION	PERSONS	ITEMS [uncentralised thresholds]
3.0		3-facial.2 6-other location.2
2.0		5-upper airways.2 8-emergency.2
1.0	x x xxx	4-genital.3 7-treated attacks.2 6-other location.1 9-Psychological.1 11-health.3 4-genital.2 2-abdominal.3 12-pain.3 10-school/work.3 1-peripheral.3
0.0	XXX XXXXXX XXXXXX XXXXXX	5-upper airways.1 4-genital.1 3-facial.1 12-pain.2 2-abdominal.2
-1.0	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	10-school/work.2 11-health.2 1-peripheral.2 8-emergency.1 7-treated attacks.1 10-school/work.1
-2.0	XXXXXXXXXX XXXXXXXXXX XXXXXXXXXXX XXXXXX	2-abdominal.1 12-pain.1 1-peripheral.1
-3.0	XXXXXX X XXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
-4.0	xxx xxxxxxxx	11-health.1
-5.0		
-6.0	xxx	
	x = 2 Persons	

J Investig Allergol Clin Immunol 2021; Vol. 31(3) doi: 10.18176/jiaci.0479