Diagnostic capacity of commercial extracts versus prick by prick in the study of peanut sensitization. Which technique should we use?

Running title: Skin tests in peanut allergy

D'Amelio CM¹*, García-Moral A², Azofra J³*, Bartra J⁴*, García BE⁴*, Quiñones MD⁵, Goikoetxea MJ¹*, Martínez-Aranguren R¹, Gastaminza G¹*

¹Clínica Universidad de Navarra (Pamplona, Spain), IdiSNA (Instituto de Investigación Sanitaria de Navarra)
²Hospital Clinic, Barcelona. IDIBAPS. Universitat de Barcelona, (Barcelona, Spain).
³Hospital Universitario Central de Oviedo (Asturias, Spain)
⁴Complejo Hospitalario de Navarra (Pamplona, Spain), IdiSNA (Instituto de Investigación Sanitaria de Navarra).
⁵Hospital Monte Naranco (Oviedo, Asturias, Spain)

Corresponding author:
D'Amelio, Carmen M.
Departamento de Alergología
Clínica Universidad de Navarra
Avenida Pío XII, 36
Pamplona, Spain CP: 31008
E-mail: cdamelio@unav.es

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.18176/jiaci.0555
Peanut is a well-known allergen that can cause severe reactions. Skin tests are usually the first step to confirm IgE-mediated sensitization in due to their simplicity and reliability [1]. There is currently no consensus of whether the skin prick test (SPT) using commercialized allergen extracts or the prick-by-prick test with the fresh food is preferable to detect allergen sensitization [2-4]. We aimed to describe the diagnostic capacity of SPT versus prick-by-prick in the detection of sensitization to peanut and if there is a relation of its results with the molecular sensitization profile.

Fourty two patients (>6 years) were prospectively recruited from five allergy departments of Spain. All patients had history of objective symptoms (digestive, respiratory, urticaria or anaphylaxis) immediately after ingestion of peanut in the past two years and positive SPT with peanut commercial extract (ALK-Abelló®, Bial-Aristegui®, Diater®, or Leti® as used in each allergy service). All participants signed the informed consent [Investigational Ethical Committee (060-2013)]. All patients filled out the study questionnaire regarding symptoms presented with peanut and frequency of consumption of other foods.

Skin prick tests were performed in all patients with four commercial peanut extract (CE) [ALK-Abelló®, Bial-Aristegui®, Diater®, Leti®], peach extract (30 mg/mL of Pru p 3, ALK-Abelló®), profilin (ALK-Abelló®), peanut lipidic fraction extract (Diater®), apple extract (quantified Mal d 1: 10 µg/ml) and prick-by-prick with roasted peanut and crunchy peanut butter (Varma Foods SL, Madrid, Spain). Sodium chloride (0,9%) and histamine hydrochloride (10 mg/mL) served as negative and positive controls, respectively. Wheals of ≥3mm of diameter were considered positive as recommended by the EAACI guidelines [5].

Determination of serum specific IgE (sIgE) was performed in all subjects (ImmunoCAP Thermofisher, Uppsala, Sweden) against peanut (whole extract), recombinant(r) peanut allergens (rAra h 1, rAra h 2, rAra h 3, rAra h 9) and rPru p 3. sIgE was considered positive when ≥0.10 kUA/L, following manufacturer’s recommendations. Statistical analysis was performed with STATA/IC 12.0. Variables were tested for normality by employing the Shapiro-Wilk test. Values for quantitative variables found not to have a normal distribution were described employing median and interquartile range, and comparative analyses were conducted.
employing the Mann-Whitney U (Wilcoxon rank-sum) test. ANOVA Test was used to compared the wheal size among the CEs and the Tukey method for pairwise comparison. The comparison between proportion of positive or negative results among the different SPT results was compared by Cochran test.

The mean age of the studied population was 28.3(6; 69) years [26 (62%) females]; 9(21%) were under 18 years [(mean age 11.3 (6-17) years old]. Fourteen patients (33.3%) presented angioedema, 12(28.5%) urticaria, 7(16.7%) anaphylaxis, 5(11.9%) had respiratory symptoms and 4(9.5%) presented gastrointestinal symptoms.

Results of skin tests are shown in Table I. Differences among the different CEs were not statistically significant. Interestingly, all the CEs showed better diagnostic accuracy than the prick-by-prick, either with roasted peanut (p<0.001) or with peanut butter (p<0.001). Statistically significant differences were also detected in the SPT wheal size among the four CEs and the prick-by-prick (p<0.0001).

Twenty-seven patients (64%) were exclusively sensitized to LTP -not sensitized to storage proteins (SP)-, 6(14%) were sensitized to LTPs and SP; and 4(10%) were exclusively sensitized to SP. Four patients (9.5%) were sensitized to rAra h 1, 10 (23.8%) to Ara h 2 and 1 (2.4%) to Ara h 3; three patients (7.1%) were sensitized to Ara h 8 and 31 (73.8%) to Ara h 9. Thirty-two patients (76.2%) showed sensitization to Pru p 3 (4 patients did not show sIgE to any of these components).

Interestingly, the wheal size was greater in patients sensitized to storage proteins in comparison with those who were not sensitized to these allergens (see online repository Figure 1). The SPT with the CEs yielded greater wheal size than the prick-by-prick independently of the molecular sensitization profile (p<0.001).

Regarding the size of the resulting wheal, a good correlation was observed among the prick-by-prick with peanut butter and roasted peanut (0.80), the lipidic fraction and the roasted peanut (0.72), DIATER CEs and roasted peanut (0.70) and among the DIATER CE and prick-by-prick with peanut butter (0.75). Interestingly, all patients that were sensitized to SP had positive prick-by-prick).

In the studied sample, the mean value of specific sIgE against peanut was 5,57 kUA/L. Higher concentrations were found in patients with exclusive sensitization to storage proteins in comparison to those who were exclusively sensitized to LTP (median values of sIgE: 14,89 vs. 2,94 KUA/L respectively; Mann Whitney: 0,034).

According to our results, the studied CEs showed better capacity in detecting sensitization to peanut in comparison to the prick-by-prick technique, in contrast to the findings of Rancé et al.
who found a superior diagnostic capacity of raw extracts over CEs and hypothesized that this difference may be due to the loss of peanut oil and hydrophobic agents in the CEs. However, we only found positive SPT to the lipidic fraction -the isolated oily fraction- in 19% of our population and none of them showed monosensitization nor negative SPT with CEs.

Although the allergenic composition of CEs to foods may be highly variable [6,7], we hypothesize that mechanical or chemical procedures during the preparation of the CEs may favor the availability of the different allergenic components, specially LTP, to which the majority of our patients are sensitized. Moreover, we consider that the presence of other components may be influenced by the cooking or presentation of the food in the prick-by-prick, which is often used due to its simplicity and low cost, but it is not standardized [8] for which it is important to consider the possibility of obtaining falsely negative results. Additionally, the performance of prick-by-prick may vary according to the total amount of allergen that is tested, its preservation and its exposure to the skin. In our study, the skin tests were performed by allergology nurses to minimize these factors. In our population, the studied available CEs have demonstrated better diagnostic performance in detecting sensitization to peanut in comparison with the prick-by-prick, and these results varies according to the molecular profile of sensitization.

A potential limitation of the present study was the impossibility of determining the specific sIgE against all the available peanut allergens and in the fact that not all the patients underwent OFC. According to our data, we suggest to perform SPT to peanut using commercial extracts. However, the standardization of peanut CEs is still needed in order to guarantee the presence of all peanut allergenic components improving their diagnostic accuracy.

Study funding/competing interests: This work was supported by Instituto de Salud Carlos III (ISCIII) co-founded by Fondo Europeo de Desarrollo Regional – FEDER for the Thematic Networks and Co-operative Research Centres: ARADyAL (RD16/0006/0031 and RD16/0006/0007). MJ Goikoetxea was the recipient of a grant from Fundación Jesús de Gangoiti Barrera. The authors have no conflicts of interest to declare.
References

<table>
<thead>
<tr>
<th>Extract/Allergen</th>
<th>Diater® CE SPT</th>
<th>Leti® CE SPT</th>
<th>ALK-Abelló® SPT</th>
<th>Bial® SPT</th>
<th>Roasted peanut prick by prick</th>
<th>Peanut butter prick by prick</th>
<th>Lipidic fraction (Diater® SPT)</th>
<th>Peach extract (30 mg/ml of Pru p 3, ALK®) SPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>N of positives (%)</td>
<td>30 (90.5)</td>
<td>37 (88)</td>
<td>36 (85.7)</td>
<td>33 (78.6)</td>
<td>22 (52.4)</td>
<td>26 (61.9)</td>
<td>8 (19)</td>
<td>29 (96)</td>
</tr>
<tr>
<td>Mean wheal size (min;max) min</td>
<td>32 (8;77)</td>
<td>38.1 (8;103)</td>
<td>35.6 (7;161)</td>
<td>26.6 (7;95)</td>
<td>33.7 (7;143)</td>
<td>31.5 (7;88)</td>
<td>33.7 (7;143)</td>
<td>43.8 (8;102)</td>
</tr>
</tbody>
</table>

Table 1. Skin test results in the studied population. CE: commercial extract; SPT: skin prick test.