Anaphylaxis Induced by Conlinin, a 2S Storage Protein in Flaxseed

Basagaña M1, Prieto-García A2, Miquel S1, Micozzi S2, Bartolomé B3, Labrador-Horrillo M4, Roger A1
1Allergy Section, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
2Allergy Department, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
3R&D Department, Roxall, Bilbao, Spain
4Allergy Section, Department of Internal Medicine, Hospital Universitari de la Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain

doi: 10.18176/jiaci.0208

Key words: Flaxseed allergy. Component-resolved diagnosis. Food Allergy. Anaphylaxis.

Palabras clave: Alergia a semillas de lino. Diagnóstico por componentes. Alergia a alimentos. Anafilaxia.

The prevalence of allergy to seeds is highly influenced by the geographical area and eating habits. In Spain, according to data from Alergologica 2015 [1], allergy to tree nuts and seeds accounts for 28.4% of all cases of food allergy.

Flaxseed is the seed of the plant *Linum usitatissimum*. It is consumed as a nutritional supplement because it is rich in dietary fiber, polyunsaturated fatty acids, and lignans.

Flaxseed has rarely been reported to be a sensitizer [2], and there are few reports of anaphylaxis caused by flaxseed in the literature [3-6]. However, it is an increasingly common source of allergens as a result of its use in diets for its nutritional benefits and anticancer properties.

Flaxseed contains many potential allergens. The storage protein content ranges from 10% to 37%, and has been reported to be as high as 20%-42% for conlinin (the low-molecular-mass fraction [2S]) and 58%-66% for linin (the major protein fraction [12S]) [7]. A 56-kDa IgE-binding protein reported in 1 case [5] is thought to correspond to malate dehydrogenase-1. Other authors have recently suggested that the lipid transfer protein (LTP) was the relevant allergen in a case of flaxseed anaphylaxis [8].

We present 2 cases of flaxseed-induced anaphylaxis. Patient 1 was a 46-year-old white woman with a personal history of bronchial asthma and rhinoconjunctivitis who presented with pharyngeal pruritus, lingual and palpebral angioedema, dyspnea, and profuse diarrhea immediately after eating multicereal biscuits (oat, rice, flaxseeds, egg, almonds, and raisins). Patient 2 was a 64-year-old white woman with a personal history of breast cancer, allergy to ceftriaxone, and allergic rhinoconjunctivitis due to pollens and pet dander. She presented palmoplantar itching, generalized urticaria, lip angioedema, and throat tightness immediately after eating a
salad containing tomato, lettuce, cheese, and flaxseeds. All ingredients but flaxseeds were tolerated afterwards in both cases.

Patient 1 underwent skin prick testing (SPT) with a panel of common aeroallergen extracts. The results were positive only for dog dander. The results of SPT with food extracts were positive to nut, peanut, mustard, tomato, corn, peach, and apple. SPT with commercial cereal extracts (wheat, rice, oat, barley, rye, gluten, and gliadin) were negative. Prick-by-prick testing with flaxseed was positive (13×9 mm). The results for total IgE and serum specific IgE (UniCAP, Thermo Fisher) were as follows: 282 kU/L (total); dog dander, 3.26 kU/L; peanut, 0.38 kU/L; apple, 1.14 kU/L; tomato, 2.22 kU/L; flaxseed, 1.25 kU/L; Pru p 3, 1.97 kU/L; and α-5 gliadin 0-kU/L. Specific IgE results were negative for 2S albumins (UniCAP, rAra h 2, rBer e 1, rJug r 1, rCor a 14, and rAra o 3; and ISAC, rBer e 1, nSes i1, rAra h2, nAra h6, nFag e2, and rJug r1). ISAC microarray (Thermo Fisher) revealed positivity to Can f 5 (35 ISU), Cry j 1 (0.4 ISU), Cup a 1 (1.8 ISU), Ara h 9 (0.3 ISU), Jug r 3 (0.4 ISU), Pru p 3 (0.4 ISU), and Art v 3 (0.5 ISU).

In patient 2, SPT with the common panel of aeroallergen extracts was positive to pollens from *Cupressus arizonica, Platanus acerifolia, Phleum pratense*, and *Plantago lanceolata*, as well as to dog and cat dander. SPT with food extracts was positive to sunflower seed and negative to peanut, almond, hazelnut, walnut, pistachio, Pru p 3, and Pho d 2. Prick-by-prick testing with flaxseed was positive (10×7 mm). Testing for total IgE and serum specific IgE (UniCAP, Thermo Fisher) revealed the following results: total, 57 kU/L; *Phleum pratense* pollen, 2.17 kU/L; flaxseed, 2.28 kU/L; and sunflower seed, 0.1 kU/L. The results of testing were negative for walnut, almond, hazelnut, pistachio, soybean, and sesame seed.

The flaxseed protein extract was prepared by homogenization in phosphate-buffered saline, dialyzation, and lyophilization. SDS-PAGE immunoblotting under nonreducing and reducing conditions was carried out as previously described [9] with linseed extract in sera from both patients. Similar IgE-binding profiles were detected with both sera under nonreducing conditions, namely, bands of 60 kDa, 50 kDa, and 12 kDa (a 45-kDa band was also observed in the serum of patient 2). Under reducing conditions, both sera revealed an IgE-binding band of 8 kDa, and a 34-kDa band was also detected in serum from patient 2 (Figure).

Bands of 50 kDa and 12 kDa (without 2-mercaptoethanol) and 8 kDa and 34 kDa (with 2-mercaptoethanol) were extracted from the gel and digested with trypsin, and the proteins were analyzed using mass spectrometry LC-MSMS (HR, ORBITRAP, short gradient), as previously described [10]. Peptides from the protein conlinin (a 2S storage protein of flaxseed) were identified in all the bands.

We present 2 cases of IgE-mediated anaphylaxis caused by flaxseed that were confirmed by positive prick-by-prick test results, serum specific IgE determination, and immunoblot assay. In 1 patient, mass spectrometry revealed the seed storage protein conlinin to be the relevant allergen. Conlinin may also have been involved in the second patient, since similar allergenic bands were seen in the immunoblot assay.

Antolin-Amerigo et al. [8] identified a 9-kDa allergenic protein by Western blot in a case of anaphylaxis to flaxseed and concluded that the protein could be the flaxseed LTP, assuming that the LTP was the culprit allergen, since serum sIgE to LTP of pollens and peach were positive (as shown in Patient 1). However, this patient tolerated fruits and nuts, and the protein was not sequenced.

Tolerance of other foods and negative results with serum specific IgE against other purified 2S albumins indicate probable low cross-reactivity between flaxseed conlinin and 2S albumins of other plant species. Although patient 2 had positive skin test results with sunflower seed, we could not determine their clinical relevance, since the patient did not eat sunflower seeds.

In conclusion, our study of 2 cases of anaphylaxis caused by flaxseed ingestion revealed the culprit allergen to be the seed storage protein conlinin. To date, this is the first flaxseed allergen identified.

Funding

The authors declare that no funding was received for the present study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

© 2018 Esmon Publicidad

Figure. SDS-PAGE immunoblotting with golden linseed extract. Lane P₁, serum from patient 1; lane P₂, serum from patient 2; lane C, control serum (pool of sera from nonatopic subjects); lane M, molecular mass standard. (–) samples without 2-mercaptoethanol; (+) samples with 2-mercaptoethanol.
Clinical Profile of Lipid Transfer Protein Syndrome in a Mediterranean Area

Maria Basagaña Torrentó
Allergy Unit
Hospital Universitari Germans Trias i Pujol
Ctra/ Del Canyet, s/n
08916 Badalona, Spain
E-mail: maria.basagana.torrento@gmail.com

Nonspecific lipid transfer proteins (LTPs) are present in several plant foods. LTPs are highly stable during thermal processing and digestion [1,2]. Reactivity of IgE to LTPs is often associated with severe systemic symptoms [3]. LTPs are the most important family of plant food allergens in Spain [4]. Pru p 3 is the predominant LTP in terms of recognition of IgE by a patient [5]. Owing to structural homology, LTPs from various allergen sources are generally cross-reactive to various types of IgE. However, sensitization profiles vary widely between allergic patients [6].

The aims of this study were to describe the clinical and sensitization profile of patients with LTP syndrome and to determine a clinical pattern of severity.

The study sample comprised consecutive patients referred to the Allergy Unit of Hospital Universitari Germans Trias i Pujol, Badalona, Spain during 2016 (a total of 560 patients with food allergy were screened). Selection was based on a clear history of plant food allergy and IgE-mediated sensitization to Pru p 3 in a skin prick test. A control group was selected based on IgE-mediated sensitization to Pru p 3 without associated food allergy. Patients—or their representatives in the case of children—provided their informed consent, and the study was approved by the local ethics committee (PI-17-074).

The clinical evaluation comprised an exhaustive medical history, skin prick tests with a common panel of aeroallergens, plant food allergens, and purified and enriched peach LTP components (Bial-Aristegui). Specific IgE to Pru p 3 and total IgE were determined using ImmunoCAP (Thermo Fisher), and IgE to the allergen components were determined using the microarray-based IgE detection chip ImmunoCAP ISAC (Thermo Fisher). ImmunoCAP and ISAC results higher than 0.35 kU/L and 0.3 ISU/E, respectively, were considered positive.

The c2 or Fisher exact test was used to compare categorical variables; an analysis of variance or the Kruskal-Wallis test was used to compare quantitative variables. Statistical significance was set at P<.05.

References