Adaptation to Spanish and Validation of the Rhinitis Control Assessment Test questionnaire

Del Cuvillo A1,*, Sastre J2,3,4,*, Colás C5, Navarro AM6, Mullol J4,7,**, Valero A4,8,***

1Rhinology and Asthma Unit, Department of Otorhinolaryngology, Hospital Universitario de Jerez, Jerez, Spain
2Department of Allergy, Fundación Jiménez Díaz, Madrid, Spain
3Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
4CIBERS, Instituto de Salud Carlos III, Spain
5Department of Allergy, Hospital Clínico Lozano Blesa, Instituto de Investigación Sanitaria de Aragón, Zaragoza, Spain
6Department of Allergy, Hospital El Tomillar, Dos Hermanas, Sevilla, Spain
7Rhinology Unit and Smell Clinic, Department of Otorhinolaryngology, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
8Department of Pneumology and Allergy, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
*These authors contributed equally as first authors
**These authors contributed equally with senior responsibilities

doi: 10.18176/jiaci.0420

Abstract

Background: The Rhinitis Control Assessment Test (RCAT) is a patient-based questionnaire that is widely used to evaluate control of rhinitis.
Objective: To develop and validate a Spanish version of the RCAT (RCATe).
Methods: After translation and cultural adaptation of the original RCAT, this multicenter, observational, prospective study evaluated the properties/attributes of the RCATe by assessing its validity, reliability, responsiveness, effect size, minimal important difference and cut point.
Results: The recruited sample comprised 252 allergic rhinitis (AR) patients from 27 allergy and otolaryngology departments in hospitals throughout Spain. Significant and strong correlations were found between the RCATe and the total nasal symptom score and the visual analog scale (–0.79 and –0.77, respectively; P<.0001). The RCATe revealed significant differences between patients grouped in the different categories of severity or duration of AR (P<.001). The internal consistency (Cronbach’s α) was good (0.84), and the test-retest reliability was moderate (0.54 evaluated by the physician and 0.49 by the patient). The responsiveness to change was high and significant for RCATe (P<.0001) and correlated linearly with the improvement in AR. The overall effect size was 1.62. The cut-off point to identify patients with adequate control of AR was >20 (area under the receiver operating characteristic curve, 0.746; sensitivity, 58.3%; specificity, 90.9%).
Conclusion: The psychometric evaluation and validation of the RCATe indicated good reliability, validity, and responsiveness, thus suggesting that it is effective for measuring control of rhinitis symptoms by Spanish-speaking patients.

Key words: Allergic rhinitis. Patient-reported outcome. Rhinitis control. Psychometric evaluation. Rhinitis Control Assessment Test.

Resumen

Antecedentes: El cuestionario de control de la rinitis RCAT (Rhinitis Control Assessment Test) es un cuestionario auto administrado para evaluar el control de la rinitis, de uso muy extendido.
Objetivo: Desarrollar y validar una versión traducida del cuestionario RCAT para pacientes hispanohablantes (RCATe).
Métodos: Tras la traducción y adaptación cultural del cuestionario original, se realizó un estudio multicéntrico prospectivo para evaluar los atributos y propiedades del RCATe analizando su validez, fiabilidad, capacidad de respuesta, tamaño del efecto, diferencias mínimas relevantes y puntos de corte.
Resultados: Se incluyeron 252 pacientes con rinitis alérgica (AR) de 27 unidades de Alergia y Otorrinolaringología de hospitales de toda España. El RCATe, la puntuación total de síntomas y la escala visual analógica se correlacionaron de forma robusta y significativa (–0.79 and –0.77, respectivamente; p<0.0001). El RCATe diferenció de forma significativa pacientes clasificados en diferentes categorías de gravedad o duración de la AR (p<0.001). La consistencia interna (alfa de Cronbach) resultó buena (0.84) y la fiabilidad test-retest moderada (0.54 evaluada por el especialista y 0.49 por el paciente). La sensibilidad al cambio del RCATe fue elevada significativamente (p<0.0001), y se correlacionó linealmente con la mejora de la AR. El tamaño del efecto global fue 1.62. El punto de corte para identificar pacientes con un adecuado control de la AR fue >20 (área bajo la curva ROC= 0.746; sensibilidad= 58.3%; especificidad= 90.9%).
Conclusiones: La evaluación psicométrica y la validación del RCATe indicaron una buena fiabilidad, validez y capacidad de respuesta, sugiriendo que puede usarse eficazmente para evaluar el control de los síntomas de AR en pacientes hispanohablantes.

Introduction

Allergic rhinitis (AR) is the most prevalent noncommunicable chronic disease, affecting approximately one quarter of the world’s population [1]. AR has a major impact on patient quality of life [2], as assessed using standardized questionnaires [3,4], and this is related to the severity of the disease [5]. Disease-related direct and indirect costs constitute a major burden for health systems [6].

The concept of control for chronic diseases has emerged in recent decades as the result of the difficulties for patients to achieve full remission and in the context of the need for a new individualized care approach, now known as precision medicine [7]. The concept of disease control refers to a status in which treatment objectives are reached and symptoms are minimized [8]. Disease control comprises various dimensions of the disease such as effects on daytime/nocturnal symptoms, social life, work, academic performance, and leisure activities. It also covers the influence on these aspects of medication and its adverse effects, the impact on respiratory function, the degree of response to treatment, the impact of exacerbations, and prognosis. In contrast, the concept of disease severity refers to the intensity of the loss of function of the organ(s) affected by the disease. Severity is an intrinsic feature of the disease that can change over time.

The evaluation of disease control in AR is challenging owing to the difficulty of including all the above dimensions in a single measurement tool. Control of AR can be evaluated using standardized questionnaires, which is similar to the approach used for the management of asthma. These questionnaires are relatively simple and practical tools that enable fast assessment of disease control based on the patient’s answers to a few questions [9]. The Rhinitis Assessment Control Test (RCAT) is a patient-reported instrument comprising 6 questions answered on a Likert scale with 5 response options, which are scored from 1 to 5, with a total score ranging from 6 to 30 (the higher the score, the better the control) [10]. It was originally validated in American English and then widely validated and translated into other languages [11]. The RCAT is likely the most widely used patient-based questionnaire to assess control of AR, especially in clinical research. It has been positively evaluated with respect to its psychometric qualities and its capacity to evaluate control [9].

The objective of this study was to translate and adapt the RCAT questionnaire for use by Spanish-speaking patients, as well as to evaluate the psychometric attributes of the translated version, following the recommendations of the international consensus-based standards for the selection of health measurement instruments (COSMIN) [12].

Methods

RCATe Translation and Cultural Adaptation

A standard forward and back translation process was used [13]. Qualitative assessment was performed at pilot interviews using translated versions of the questionnaire with 11 AR patients from Hospital Clínico de Zaragoza, Zaragoza, Spain and Hospital Clinic de Barcelona, Barcelona, Spain to test readability and comprehensibility.

AR Patients

A multicenter, observational prospective study was performed under real-life conditions to psychometrically validate the RCATe. Allergologists and otorhinolaryngologists from referral hospitals throughout Spain participated in the study. To avoid possible biases, each physician included no more than 4 patients per month, up to a total of 15 patients per investigator. The inclusion criteria were age ≥18 years and diagnosis of moderate to severe AR following the criteria of the modified ARIA Guidelines (mARIA) [14] and a reflective total nasal symptom score (rTNSS: the sum of a bilateral scoring symptom of nasal congestion/obstruction, nasal itching, rhinorrhea, and sneezing, scoring from 0 [no symptoms] to 3 [highest intensity]) ≥8 (from 0 to 12). The exclusion criteria were previous inclusion in clinical trials or diagnosis of obstructive septal deviation, chronic rhinosinusitis, or nasal polyps. All patients signed a written informed consent document before participating in the study. The study was approved by the Ethics Committee for Clinical Research of Hospital Clinic de Barcelona and was carried out from November 2015 to October 2016.

Study Design

Patients were interviewed twice within a month (baseline visit and second visit). Sociodemographic data were collected, as were data on concomitant diseases and medication use, etiology of allergic sensitization, severity of rhinitis depending on a symptom score and quality of life (ESPRINT questionnaire) [15]. Overall severity and severity of individual symptoms were evaluated using a visual analog scale (VAS, 0-10 cm). Additionally, patients were given the Spanish version of the RCAT questionnaire (RCATe) (Figure 1).

The psychometric validation of the RCATe questionnaire was performed according to the following parameters:

- Feasibility: Percentage of patients able to respond to all questions on the RCATe questionnaire.
- Floor and ceiling effect: Percentage of patients with the maximum and minimum score.
- Convergent validity: Estimated by computing the Spearman rank-order correlations between the score from the RCATe questionnaire and the rTNSS, and between the RCATe and the score from the patient-completed VAS to assess severity of AR.
- Discriminant validity: Assessment of the differences in the RCATe score between patients grouped in different categories of the classification of AR according to the modified ARIA Guidelines [14].
- Reliability: Internal consistency was measured using the Cronbach α coefficient. Test-retest reliability was measured using the intraclass correlation coefficient between the RCATe score at the initial and final visits in patients who reported a similar state of health with respect to AR by means of a specific Likert scale question on “change in health status”, which was asked at the final visit.
- Responsiveness: Relationship between changes in the RCATe score at the initial and final visits, with the degree of improvement in the AR symptoms evaluated by means of a specific question put to the patient (“change in health
classify patients according to the level of control in the full spectrum of cut-off points (poor control vs good control), the area under the receiver operating characteristic (ROC) curve was calculated. For each cut-off point, the sensitivity, specificity, positive predictive value, negative predictive value, and the percentage of correctly classified patients, together with the 95% CI, were calculated. In addition, the percentages of false positives and false negatives were analyzed. The cut-off point was that which enabled sensitivity, specificity, and the positive and negative predictive values to be maximized, based on the Youden Index (sensitivity + specificity – 1). In addition, a second cut-off point was calculated to discriminate between patients with partially controlled disease and uncontrolled disease, excluding those with controlled disease, using the same methodology. Patients with partially controlled disease were defined as those who had “somewhat improved” and those with uncontrolled disease were those whose categories were “equal”, “somewhat worse”, or “much worse”.

Statistical Analysis

The statistical analysis was performed using SAS version 9.2 for Windows. Continuous variables were expressed using the mean (SD), minimum and maximum, median (IQR), and the number of valid cases. Categorical variables were expressed using the number and percentage of patients by response category. Prior to performing parametric tests, we applied statistical techniques to ensure compliance with the assumptions. Nonparametric tests were used in cases where the established assumptions were not met. Statistical significance was set at $P<.05$ for all tests.
Results

The AR patients included in this study (N=252) were selected by 27 allergologists or otorhinolaryngologists working in major hospitals throughout Spain. The mean (SD) age of the patients was 35 (12) years, and 71% were women. The mean time elapsed between the date of diagnosis and the study was 6.3 (9.7) years. Most of the patients had persistent AR (60%), while the remainder had intermittent AR. Regarding disease severity, 29.4% presented mild AR, 60.1% moderate AR, and 10.4% severe AR. Additionally, 35.7% of the patients had concomitant asthma (34.4% mild, 65.6% moderate), and 60% presented concomitant ocular symptoms.

As for feasibility, 99.2% of patients answered 100% of the RCATe questions, indicating that the test is viable and easy to understand. The percentage of patients with the minimum and the maximum score was 0% and 1.8%, respectively, suggesting no significant floor or ceiling effects.

Convergent validity was high, as suggested by the high Spearman correlation coefficients of –0.79 (P<.0001) between the RCATe and the rTNSS and –0.77 (P<.0001) between the RCATe and severity of AR assessed using a VAS.

As for discriminant validity, significant differences (P<.001, Tukey range test) were found in the RCATe scores among patients grouped in different categories of the AR classification according to the ARIA guidelines (Figure 2).

The internal consistency of the RCATe was robust (Cronbach α, 0.84). The intraclass correlation coefficient was 0.49 for patients who classed their health status as the same, and 0.54 when the physician assessed the change in health status.

The responsiveness of the RCATe was high, with changes being significantly higher for the patients who consider that their health status was much better or much worse than that of those who considered their health status to be equal or somewhat worse or improved (P<.0001, Tukey range test). The same result was recorded if the evaluation of the changes in health status was made by the physician (Figure 3). When the evaluation was made by the physician, the mean RCATe scores increased by 9.2 (5.1) in patients for whom AR symptoms remained the same, and 2.7 (3.5) for those who were somewhat worse. When this evaluation was made by the patient, the scores on the RCATe questionnaire increased by 9.8 (5.1) points for those who declared that their health status at the final visit was strongly improved from the baseline visit, 7.3 (5.0) for those for whom it was somewhat improved, 3.8 (3.1) for those for whom it was slightly improved, 2.9 (4.0) for those for whom it was the same, and –1.6 (3.2) points for those for whom it was somewhat worse. A linear association was observed between changes in the RCATe and improvement in AR (P<.001, Tukey range test). A strong correlation was observed between changes in the RCATe score and changes in the rTNSS, with a correlation coefficient of –0.71 (P<.0001).

The overall effect size was 1.62. Higher values were observed in patients with a greater change reported in health status. The MID was 2.0 points when calculated by the method of distribution of values and 3.8 points when calculated according to the anchor-based approach.

The area under the ROC curve was used to assess the capacity of the RCATe questionnaire to classify patients according to the level of control, using as a reference the degree of control according to the physician (poor control vs good control). The area under the ROC curve was 0.8106, suggesting good accuracy. The optimal cut-off point obtained to differentiate the controlled patients from the rest was 20 (area under the ROC curve, 0.746; sensitivity, 58.3%; specificity, 90.9%). In addition, a second point was calculated to discriminate between patients with partially controlled disease and patients with uncontrolled disease (excluding those with controlled disease); this resulted in a cut-off of 18
(area under the ROC curve, 0.6646; sensitivity, 69.7%; and specificity, 36.8%).

The correlation between RCAT\textsubscript{e} and the quality of life questionnaire (ESPRINT-15) scores was high and significant (Pearson coefficient, 0.85; \(P<0.0001 \))

Discussion

This study shows that the psychometric validation of the Spanish version of the RCAT\textsubscript{e} was satisfactory and fulfilled all the requirements established in the COSMIN methodology [12]. COSMIN brings together the common properties of patient-reported outcomes (PROs) by grouping the 9 properties that are considered relevant in any PRO into 3 domains: reliability (which also includes internal consistency and precision), validity (ie, of the content, criteria, and construction, as well as of the cultural adaptation), and sensitivity. Here, we present favorable results for each of these properties, which show that the RCAT\textsubscript{e} questionnaire has good or very good levels of reliability and sensitivity.

Meltzer et al [17] performed the first psychometric evaluation of the original RCAT questionnaire. Despite being performed on a larger sample, the evaluation included patients of an age and sex distribution similar to those in our study. While the Cronbach \(\alpha \) in the Meltzer study and ours was similar (0.84), the test-retest reliability was lower in our study (0.78 vs 0.54 if the evaluation was performed by the physician or 0.49 if it was performed by the patient). This difference may have been due to the inclusion of patients with nonallergic rhinitis in the study by Meltzer et al than in ours, which included AR exclusively. Additionally, most of the patients in our study improved significantly, with only a few remaining unchanged and being available for assessment of test-retest reliability.

Regarding convergent validity, Meltzer et al [17] assessed the correlation between the questionnaire and the rTNSS, the patient's overall assessment of the severity of his/her rhinitis, and the physician's assessment of the severity and control of rhinitis. The correlations obtained were between –0.3 and –0.6 when the assessment was by the patient, but 0.24 when the assessment was by the physician. In our case, convergent validity was evaluated against the rTNSS and the overall evaluation of the patient's severity of AR. In both cases, correlation values above 0.70 were considered significant.

With respect to discriminant validity, which is evaluated against known groups, Meltzer et al [17] stratified severity as mild, moderate, and severe based on the rTNSS and following nonvalidated criteria. The degree of control was evaluated by the physician. Questionnaire scores differed significantly between the groups assessed. In our case, the study groups were established according to standardized and validated criteria for severity and duration in the modified ARIA guidelines [14]. This resulted in significant and relevant differences in the RCAT\textsubscript{e} score obtained by patients with intermittent or persistent AR and by patients with mild, moderate, or severe AR.

Longitudinal validity and responsiveness were also evaluated by Meltzer et al [17], who compared the changes in the questionnaire and changes in the TNSS, in the evaluation of the control by the physician and in the patient's self-assessment of the change in his/her condition. A significant improvement was obtained in the RCAT score in patients who improved both according to the physician and according to the patient, although the correlation was more marked when the evaluation was made by the patient. In our study, a good correlation (>0.70) was obtained between the changes in the RCAT\textsubscript{e} and the change in the rTNSS. We also observed a linear association between the change in the RCAT\textsubscript{e} score and the patient's subjective evaluation of the change, although this linear association was smaller if the physician evaluated the change in AR. This finding was similar in both studies, thus highlighting the character of RCAT as a patient-reported outcome.

Meltzer et al [17] established the optimal cut-off point for physicians to differentiate between controlled and uncontrolled disease, with 21 as the value that best discriminates (area under

Table. Main Parameters Obtained in the Psychometric Validations of the US, Portuguese, and Spanish Versions of the RCAT

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients, No.</td>
<td>402a</td>
<td>141b</td>
<td>252</td>
</tr>
<tr>
<td>Internal consistency (Cronbach (\alpha))</td>
<td>0.85/0.83c</td>
<td>0.73</td>
<td>0.84</td>
</tr>
<tr>
<td>Test-retest reliability</td>
<td>0.78/0.84d</td>
<td>-</td>
<td>0.54/0.49d</td>
</tr>
<tr>
<td>Convergent validity (rTNSS)</td>
<td>–0.53/–0.59e</td>
<td>–0.73</td>
<td>–0.79</td>
</tr>
<tr>
<td>ROC cut-off point</td>
<td><21</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>MID</td>
<td>2.2/2.4f</td>
<td>-</td>
<td>2.0/3.8f</td>
</tr>
</tbody>
</table>

Abbreviations: MID, minimally important differences; ROC, receiver operating characteristic; rTNSS, reflective total nasal symptom score.

aPatients \textgreater 12 years old with allergic or nonallergic rhinitis.

bAdolescent patients (12-18 years old) with allergic rhinitis.

cPerennial/seasonal AR.

dPhysician/patient evaluations.

eDistribution/anchor-based approaches.
the ROC curve, 0.689; sensitivity, 83%; specificity, 55%). In our case, the optimal value obtained was 20 (area under the ROC curve, 0.746; sensitivity, 58.3%; specificity, 90.9%), and the second value we calculated for partially controlled patients was 18. In the original study, the authors obtained a value of 17 for this group of poorly controlled patients.

Finally, the clinical MID in the study by Meltzer et al [17] was 2.2 and 2.4, depending on the approach (distribution or anchor-based); in our study, the values were similar (2.0 and 3.8, respectively).

Comparison of both analyses enables us to conclude that the psychometric evaluation results were similar and satisfactory. The Spanish version of the questionnaire is suitable according to the quality standards of the COSMIN consensus. We also evaluated additional features such as effect size, which proved to be satisfactory, and the floor and ceiling effects, which were also reasonable.

The RCAT questionnaire has been translated, adapted, and validated psychometrically to other languages, such as Portuguese [18]. The Table shows a comparison of the main parameters derived from the original study by Meltzer et al [17], the validation of the Portuguese version, and our study. The Portuguese adaptation included an objective measurement of nasal function (peak nasal inspiratory flow), which revealed a moderate correlation with the RCAT questionnaire (0.52), thus relating control to measurement of nasal permeability. Strong correlations were also obtained between the Portuguese version of the RCAT and rTNSS for both nasal and extranasal parameters. Discriminant validity was also good, and the data were similar to those reported in our study. Unfortunately, the Portuguese version of the RCAT did not evaluate sensitivity to change or longitudinal validity.

Control and quality of life are different but related dimensions in the evaluation of the impact of AR. In our study, RCAT\text{e} and the quality of life questionnaire scores (ESPRINT-15) were linearly correlated, indicating that better control of AR is related to better specific health-related quality of life. Both questionnaires can be used complementarily when assessing patients with AR.

In conclusion, our study shows that the culturally adapted Spanish-language version of the RCAT (RCAT\text{e}) has good psychometric properties, which are similar to those of the original and other versions of the questionnaire. Therefore, RCAT\text{e} is a useful tool for evaluation of control of AR in Spanish-speaking patients.

Acknowledgments

The authors thank the study participants: María Teresa Dordal Culla (Hospital de Badalona, Barcelona); Encarnación Antón Casas (Hospital Marqués Valdecilla, Santander); Javier Montoro (Hospital Arnau de Vilanova, Valencia); Ignacio Jauregui Presa and Ignacio Antépara (Hospital de Basurto, Bilbao); Manuel Alcántara Villar (private practice, Jaén); Elisa Gómez Torrijos (Hospital Universitario Ciudad Real); Julio Delgado Romero (Hospital Virgen Macarena, Sevilla); Enric Figueurola Massana (Hospital Universitario Juan XXIII, Tarragona); Ramona Soler (Hospital Universitari Son Espases, Palma de Mallorca); Miguel Armengot Carceller (Hospital General Valencia); María Salas Cassinello (Hospital Carlos Haya, Málaga); Javier Fernández Arbeiza (Complejo Hospitalario, Cáceres); Alfonso Malet Casajuana (Private practice, Malet, Barcelona); Victor Matheu Delgado (Hospital Quirón, Tenerife); Ruperto González (Clinic Alergocan, Tenerife); José Miguel Villacampa (Hospital de Collado-Villaba-IDC, Madrid); María Cesárea Sánchez (Hospital Juan Ramón Jiménez, Complejo Hospitalario de Huelva); Manuel de Barrio Fernández (Hospital Universitario Gregorio Marañón, Madrid); Ignacio Dávila González (Hospital Clínico, Salamanca); Carmen Panizo Bravo (Hospital Nuestra Señora del Prado. Talavera de la Reina, Toledo); Víctor Soriano Gomis (Hospital General Alicante); María José Barasona Villarejo (Hospital Reina Sofia, Córdoba); José Luis Llorente Pendas and César Álvarez Marcos (Hospital Central Asturias, Oviedo); Jesús Bonnin Otal (Hospital General de Elda, Alicante); Dolores Hernández Fernández de Rojas (Hospital La Fe, Valencia); Francisco Vega de la Osada (Hospital Universitario La Princesa, Madrid); María Luisa González Gutiérrez (Hospital Clínico San Carlos, Madrid); Pedro Amaro Merino (Instituto Oto Vértigo, Madrid); Albert Roger (Centre Roger Asmòtica y Alergia, Barcelona); Magdalena Lluch Bernal (Hospital Universitario de La Paz, Madrid); Beatriz Parra (Hospital El Bierzo. Ponferrada, León).

The authors thank Francisco López de Saro (Trialance SCCL) for medical writing support.

Funding

This study was funded by Meda (a Mylan company).

Conflicts of Interest

Dr. Del Cuvillo reports grants from MYLAN during the conduct of the study. Outside this study, he reports grants and personal fees from MYLAN, personal fees from ALK, personal fees from GSK, grants and personal fees from FAES Pharma, personal fees from MSD, grants and personal fees from Novartis, grants and personal fees from Allakos, and personal fees from Sanofi.

Dr. Navarro reports grants from MYLAN during the conduct of the study. Outside this study, he reports personal fees from GSK, personal fees from LETI, personal fees from Chiesi, personal fees from Astra Zeneca, personal fees from Merck, personal fees from MSD, personal fees from Stallergenes, and personal fees from ALK.

Dr. Valero reports grants from MYLAN during the conduct of the study. Outside this study, he reports grants and personal fees from AstraZeneca, grants and personal fees from NOVARTIS, personal fees from SANOFI, personal fees from MYLAN, personal fees from MUNDIPHARMA, personal fees from LETI, personal fees from CHIESI, and personal fees from GSK.

Dr. Colás Sanz reports grants from MYLAN-MEDA Pharma during the conduct of the study. Outside this study, he reports personal fees from GlaxoSmithKline, personal fees from Novartis, personal fees from AstraZeneca, and personal fees from Menarini Group.

Dr. Joaquín reports grants from MYLAN during the conduct of the study. Outside this study, he reports personal fees from MYLAN, grants and personal fees from SANOFI,
personal fees from NOVARTIS, personal fees from GSK, personal fees from AstraZeneca, personal fees from LETI, grants from ALK, and personal fees from MUNDIPHARMA.

Dr. Mullol reports grants from MYLAN-MEDA Pharma during the conduct of the study. Outside this study, he reports personal fees from SANOFI-Genzyme-Regeneron, grants and personal fees from MYLAN-MEDA Pharma, grants and personal fees from URIACH Group, personal fees from ALK-Abelló A/S, personal fees from Menarini Group, personal fees from MSD, personal fees from GlaxoSmithKline, personal fees from Novartis, grants and personal fees from UCB Pharma, and personal fees from Genentech.

References

Manuscript received March 24, 2019; accepted for publication May 21, 2019.

Alfonso del Cuvillo

Secretaria de la Unidad de ORL (1ª Planta)
Hospital Universitario de Jerez
Ronda de Circunvalación, s/n
11407 Jerez de la Frontera, Cádiz, Spain
E-mail: dr.cuvillo@comcadiz.es