Delayed Hypersensitivity Reaction to Liraglutide: A Case Report

Carvallo A1, Silva C2, Gastaminza G1,3, D’Amelio CM1,3
1Department of Allergy and Clinical Immunology, Clinica Universidad de Navarra, Pamplona, Spain
2Department of Endocrinology and Nutrition, Clinica Universidad de Navarra, Pamplona, Spain
3Spanish Research Network on Allergy RD 1600060031 (ARADyAL: Red Nacional de Alergia -Asma, Reacciones Adversas y Alergicas) of the Carlos III Health Institute, Madrid, Spain

doi: 10.18176/jiaci.0521

Key words: Drug allergy. Liraglutide. GLP-1 receptor agonist. Delayed hypersensitivity.

Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are a class of drugs used in the treatment of type 2 diabetes. Liraglutide is currently the only GLP-1RA approved by the United States Food and Drug Administration and European Medicines Agency for treatment of obesity [1]. Allergic reactions have been reported with the exendin-4–based subtype of GLP-1RAs, although no cases with new human GLP-1 analogues, such as liraglutide and semaglutide, have been confirmed by allergy tests to date [2-5].

We present the case of a 42-year-old woman diagnosed with obesity, for which she started treatment with liraglutide at 0.6 mg/d, with weekly increments of 0.6 mg until a maximum dose of 3 mg/d was achieved. One week after starting the daily 3-mg subcutaneous dose, she presented with pruriginous erythematous macules at the injection site, which appeared 24 hours after the injection. This pattern recurred for 4 days, after which her endocrinologist referred her to our allergy department. At the physical examination, she had 2 macules (35×20 mm) on the lower left abdomen and a smaller one on the lower right abdomen at the injection sites. A skin prick test (SPT) performed with liraglutide (6 mg/mL) was negative. This was followed by an intradermal skin test (IDT), which was negative at the 1/100 (0.06 mg/mL) and 1/10 (0.6 mg/mL) dilutions; the 1/1 (6 mg/mL) dilution was initially negative, but clearly positive at the 24-hour reading (22×17 mm) (Figure). The positive dilution was tested in 5 healthy control individuals who had not been exposed to the drug, with negative results at the immediate and delayed readings. The patient was diagnosed with delayed allergy to liraglutide, and the drug was discontinued. She received topical corticosteroids, with remission of the lesions without recurrence at the 2-week follow-up. The patient had no previous history of atopy. She had a normal blood eosinophil count and liver function test results. She had never previously taken GLP-1RAs. The study was completed with a patch test to...
Serum tests with liraglutide, which she had also received, were negative. The patient later tolerated the drug. The authors attributed this to the molecular differences between the 2 exendin-4-based drugs—exenatide and lixisenatide—and the human GLP-1 analogue, liraglutide. Homology between exendin-4-based GLP-1RAs and human GLP-1 is about 53%, thus potentially explaining the patient’s tolerance to liraglutide, which has 97% homology with human GLP-1 [6].

As for human GLP-1 analogues, Neel et al [3] reported a case of injection site reaction after 2 weeks of a daily 3-mg dose of liraglutide, which resolved after discontinuation of the drug; however, no allergy study was performed on this patient. Cogen et al [4] reported a case of exanthematous pustulosis in photoexposed areas after 2 days of liraglutide treatment, with resolution after several weeks of drug discontinuation and treatment with topical corticosteroids; no skin tests or photopatch tests were performed. More recently, Bovijn et al [5] reported a case of generalized erythematous plaques and nodules in a patient with peripheral blood eosinophilia who had started liraglutide treatment 2 weeks earlier. The lesions took 5 months to resolve after discontinuation of the drug and therapy with topical corticosteroids; no allergy study was conducted. To our knowledge, no cases of confirmed hypersensitivity reaction to liraglutide with positive skin test results have been reported to date.

The symptoms observed in the present case—pruriginous macules at the injection sites—were compatible with a delayed hypersensitivity reaction to liraglutide and resolved 2 weeks after discontinuation without residual skin lesions. In contrast with previously reported cases, no other associated skin lesions, such as pustules or nodules, were present. The diagnosis was confirmed with the positive IDT result. In order to rule out the possibility of an irritant reaction resulting from the concentration used, we tested the same dilution in 5 healthy controls and recorded negative results. In relation to the negative patch testing results, the sensitivity of this method in the diagnosis of systemic drug reactions appears to be dependent on the drug type, which would explain the results observed [7].

It is worth noting that skin tests to semaglutide were negative in the present case, even though the molecule is derived from liraglutide and both are analogues of human GLP-1. Differences between semaglutide and its precursor molecule include substitution of alanine with α-aminoisobutyric acid at position 8, substitution of lysine with arginine at position 34, and acylation of lysine with a stearic diacid at position 26 [8]. The fact that IDT was negative to semaglutide could suggest that the patient’s sensitization was dependent on 1 or more of these changed molecular components. Consequently, semaglutide could be an alternative in patients allergic to liraglutide, despite the similarity between the 2 agents. In the present case, tolerance to semaglutide was not assessed.

We report a case of a delayed hypersensitivity reaction with positive skin test results to liraglutide. The negative results with semaglutide suggest that this drug could be used as an alternative in patients with allergy to liraglutide. Further studies are needed to establish a clear pattern of cross-reactivity between these 2 human GLP-1 analogues.

Funding

This work was supported by Instituto de Salud Carlos III (ISCIII) and cofunded by Fondo Europeo de Desarrollo Regional – FEDER for the Thematic Networks and Co-operative Research Centres: ARADyAL(RD16/0006/0031).

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

Anaphylaxis to Bovine Serum Albumin Tissue Adhesive in a Non–Meat-Allergic Patient

Hilger C1, Clark E2, Swiontek K1, Chiriac AM3,4, Caimmi DP3,4, Demoly P3,4,5, Bourrain JL2,3

1Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
2Department of Dermatology, CHU Montpellier, University of Montpellier I, Montpellier, France
3Department of Pulmonology, Division of Allergy, Hôpital Arnaud de Villeneuve, University, Hospital of Montpellier, Montpellier, France
4Sorbonne Université, INSERM UMR-S 1136, IPLESP , Equipe EP AR, Paris, France
5WHO Collaborating Centre on Scientific Classification Support, Montpellier, France

doi: 10.18176/jiaci.0522

BioGlue (Cryolife) is a surgical adhesive that has been used since 1998 as an adjunct to standard methods of achieving hemostasis in adult patients during open surgical repair of large vessels. The adhesive is therefore commonly used as surgical sealant in thoracic surgery [1]. It is composed of purified bovine serum albumin (BSA) and glutaraldehyde, which are dispensed by means of a controlled delivery system. Upon mixing, the components polymerize into a flexible mechanical seal. The contraindications are limited (sensitivity to materials of bovine origin, intravascular use, cerebrovascular repair). Since its introduction, application of BioGlue has been expanded notably to include repair of traumatic liver laceration [2].

A 67-year-old atopic man was admitted to hospital for treatment of an aortic aneurysm. A Bentall procedure was performed using BioGlue. The patient experienced anaphylactic shock with bronchospasm and hypotension shortly after application and was treated with crystalloids, norepinephrine, epinephrine, and salbutamol. A blood sample taken during the event showed elevated serum tryptase (18.5 µg/L). The patient was referred to our allergology department for evaluation. He had a history of allergic rhinitis to cat dander, but no food allergies. The results of skin prick tests with cat, dog, hamster, guinea pig, and rabbit dander were positive. Specific IgE (sIgE) was positive for Fel d 1 (21.6 kUA/L), Fel d 2 (3.7 kUA/L), and Fel d 4 (10.7 kUA/L) (ImmunoCAP, Thermo Fisher Scientific), but negative for Bos d 6. Skin prick tests were performed using both components of BioGlue, ie, native BSA and glutaraldehyde. The test was positive for BSA (5 mm) and negative for glutaraldehyde and the mixture of both.

 Manuscript received February 4, 2020; accepted for publication March 27, 2020.

Carmen D’Amelio
Av. Pio XII, 36
Clinica Universidad de Navarra
31008 Pamplona, Spain
E-mail: cdamelio@unav.es
