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Table 1. Genes and Corresponding Single-Nucleotide Polymorphisms (SNPs) Reported as Being Related to CRSwNP (continued)

Increase Risk SNP/Variant Decrease  
Risk

SNP/Variant Associated SNP/Variant

RYD5 [122] rs113795008 
rs2280540 
rs2294083 
rs2294082

SERPINA1 [72] rs1243168
rs4900229

SLC5A1 [21]
SERPINA1 [40,72] rs1243168 (T) 

rs4900229
SLC22A4 [55] rs1050152

TAPBP [27] rs2282851(T) TAS2R13 rs1015443
TAS2R38 
[59,61,141]

rs713598 (C) 
rs1726866 (A)
rs10246939(C)

TAS2R20 rs12226920 
rs12226919

TNF 
[30,35,37,47,49-51]

rs1800629 (A) 
rs1799724 (C)

TRIP12 [73] rs10535833

TNF [48] rs1800629
TSLP [121] rs1837253 TSLP [55] rs1837253

VSIR [21]

linked genes to obtain a broader view of their functions. Five 
clusters were found for genes related to an increased risk of NP. 
The most highly populated corresponded to that including COX 
genes, which are mainly involved in aerobic electron transport 
chains (FDR 2.26e-08). A cytokine cluster was also identified. 
Three clusters were defined for genes associated with a reduced 
risk. One included the Fanconi anemia family (FAN), which 
could be implicated in DNA interstrand cross-link repair (FDR 
1.32e-15). The other 2 clusters—ILs and HLAs—have already 
been mentioned. It should be noted that some genes, eg, IL1A 
and IL10, have been related to both higher and lower risk of 
NP, depending on the SNP studied (Table 1). 

We further explored the influence on biological functions 
of the genes that increase the risk by comparing them with 
the protective genes using the FunRich software application 
(Figure 5). Thus, differences in gene enrichment were 
noticeable for cytokine signaling and activity, IL-1 signaling, 
and MHC receptor activity, suggesting that activation of these 
pathways and processes may be linked to a reduced risk of 
disease.  

Overview of Studies

Since the list of selected studies is extensive, we review 
them according to the clusters mentioned above in order to 
facilitate reading (Figure 4). 

1) Brown cluster: HLA genes

Eight articles were dedicated to analyzing the association 
between HLA gene variants and NP [19-26]. Most of the 
variants described increased the risk of NP, and some have been 
confirmed in 2 different populations, namely, DQA1*0201 in 
Hungarian [24] and Mexican [20] patients and HLA-DRB1*03 
and *04 in Turkish [22] and Mexican [25] patients. HLA-

DQB1*0301, on the other hand, was reported to be linked to 
a reduced risk of NP in both Hungarian [24] and Iranian [19] 
cohorts. 

Alromaih et al [27] studied the 2 related genes TAPBP and 
CD8, which are also included in this cluster, reporting that the 
minor allele C in CD8 rs3810831 would reduce the risk of NP, 
while the minor allele T in TAPBP rs2282851 would increase it.

2) Red cluster: IL and associated genes

Fourteen articles studied IL and related genes, although not 
all of them reported a significant association between the SNPs 
and the variants analyzed [28,29,38-41,30-37]. Thus, Erbek et 
al [35] and Mrowicka et al [32] found a positive correlation 
between IL1B –511C>T and NP, while others reported no 
association [34,38]. IL1B rs16944 was reported both as not 
associated [28] and associated with a reduced risk of NP [37]. 

The association has been shown to depend on the SNP. 
Thus, IL1A rs17561 [28,35,38,42], rs13431828 [40], and 
rs21800587 [28] have been associated with an increased risk 
of NP, while IL1A rs2856838 [28] was linked to a reduced risk. 

Tewfik et al [31] studied a wide range of IRAK4 SNPs, 
reporting that the C allele of rs1461567, the G allele of 
rs4251513, and the A allele of rs4251559 of the IRAK4 gene 
were associated with high serum levels of IgE in NP patients. 
Likewise, Zhang et al [40] found an association between IgE 
levels and rs4251513, and reported that rs4251431, rs6582484, 
rs1461567, and rs3794262 were linked to a reduced risk of NP.

Despite not being included in the red cluster, IL4 was 
linked to other ILs that increased the risk of NP (Figure 4B) 
[33,39,43]. However, published data are controversial since 
the same SNP (–590C>T) has been reported to increase the 
risk [44], reduce the risk [45], and even not to be associated 
with NP [46].
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Upregulated Downregulated

ENSG00000248810.1 [83] ENSG00000181123.4 [83]
ENSG00000253339.1 [83] ENSG00000250360.1 [83]
hsa-miR-125b [86] hsa-miR100-5p [84]
hsa-miR-125b-5p [84,89] hsa-miR106a-5p [84]
hsa-miR-1290 [89] hsa-miR-1226-3p [91]
hsa-miR-141-3p [84] hsa-miR-124 [85]
hsa-miR-142-3p [90] hsa-miR-125b-2-3p [84]
hsa-miR-150-5p [88,89] hsa-miR-125b-5p [84]
hsa-miR-193a-5p [84] hsa-miR-126-3p [84,89]
hsa-miR-19a [87] hsa-miR-1273h-3p [89]
hsa-miR-200a-3p [84] hsa-miR-1298-5p [91]
hsa-miR-200b-3p [84] hsa-miR-1299 [91]
hsa-miR-210-3p [89] hsa-miR-130a [84,94]
hsa-miR-210-5p [91] hsa-miR-130a-3p [89]
hsa-miR-30d-5p [84] hsa-miR-130b-3p [84]
hsa-miR-30e-5p [84] hsa-miR-138-5p [94]
hsa-miR-3146 [91] hsa-miR-139-5p [89]
hsa-miR-3178 [91] hsa-miR-143-3p [89]
hsa-miR-320e [91] hsa-miR-146a [92]
hsa-miR-342-3p [89] hsa-miR-152-3p [89]
hsa-miR-34b-3p [84] hsa-miR-16-5p [89]
hsa-miR-34b-5p [84] hsa-miR-17-5p [84]
hsa-miR-4485 [89] hsa-miR-18a-5p [84]
hsa-miR-449b-5p [84] hsa-miR-18b-5p [84,94]
hsa-miR-449c-5p [84] hsa-miR-19a-3p [89]
hsa-miR-585-3p [91] hsa-miR-1914-5p [91]
hsa-miR-92b-3p [84] hsa-miR-193-3p [84,94]
XLOC_000122 [83] hsa-miR-193b-3p [84]
XLOC_003006 [83] hsa-miR-199a-3p [89]
XLOC_011814 [83] hsa-miR-199a-5p [89]
XLOC_015500 [83] hsa-miR-199b-3p [89]

Table 2. Noncoding Sequences With Differential Expression in CRSwNP Patients 

Upregulated Downregulated 

XLOC_016248 [83] hsa-miR-20a-5p [84]
XLOC_017561 [83] hsa-miR-20b-5p [84]
XLOC_018649 [83] hsa-miR-23a-3p [84]
XLOC_018891 [83] hsa-miR-23a-5p [91]
 hsa-miR-25-3p [94]
 hsa-miR-27a-3p  [84,94]
 hsa-miR-29a-3p [84,94]
 hsa-miR-30e-3p [89]
 hsa-miR-30e-5p [89]
 hsa-miR-3149 [91]
 hsa-miR-3184-5p [91]
 hsa-miR-3196 [91]
 hsa-miR-32-3p [91]
 hsa-miR-3614-5p [89]
 hsa-miR-362-3p [89]
 hsa-miR-363-3p [89]
 hsa-miR-375 [91]
 hsa-miR-377-5p [91]
 hsa-miR-3924 [91]
 hsa-miR-486-5p [89]
 hsa-miR-500a-5p [91]
 hsa-miR-532-3p [91]
 hsa-miR-548e-3p [91]
 hsa-miR-550a-3p [89]
 hsa-miR-574-5p [91]
 hsa-miR-584-5p [89]
 hsa-miR-612 [91]
 hsa-miR-628-3p [89]
 hsa-miR-6503-3p [89]
 hsa-miR-663 [93]
 hsa-miR-668-3p [91]
 hsa-miR-6867-5p [89]
 hsa-miR-708-5p [89]
 hsa-miR-92a-3p [84,87]
 hsa-miR-942-3p [89]
 XLOC_005882 [83]
 XLOC_010305 [83]
 XLOC_010540 [83]
 XLOC_015712 [83]
 XLOC_018024 [83]
 XLOC_018529 [83]
 XLOC_019396 [83]
 XLOC_025155 [83]

Abbreviation: CRSwNP, chronic rhinosinusitis with nasal polyposis.

3) Olive cluster: TNF and related genes

The olive cluster is organized around TNF. Many studies 
have focused on this crucial gene, showing a positive 
correlation between rs1800629 and the risk of NP [35,37,42,47-
50], although other authors failed to find such a correlation 
[28,51]. Thus, Mfuna-Endam et al [28] did not find an 
association for any of the 16 SNPs studied, while Berghea 
et al [51] reported rs1799724, but not rs1800629, as being 
associated with increased risk. Moreover, Szabo et al [48] 

reported that the association with NP was linked to an ancestral 
haplotype (8.1), including rs1800629, AGER rs1800625, 
HSP70-2 rs1061581, and LTA rs909253. 

MT-CO2 (COX2) rs20417 [52] and NOS-2 and CAT [53] 
have also been related to NP. Data and pathway analysis 
supported the association between COX genes and increased 
risk of NP, as shown in Figure 4B.

The olive cluster is closely related to the red cluster, 
with IL10 as the connecting node. IL10 rs1800870 [54] 
and rs1800896 [37] have been reported to be associated 
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with an increased risk of NP, whereas IL10 rs1800872 and 
rs1554286 [54] seemed to confer protection against NP.

4) Turquoise cluster

In the case of ALOX genes, the missense variant 
rs34210653[A] (Thr560Met) in ALOX15 would confer a 
68% reduction in the risk of NP [55]; ALOX5 rs3780894 
and ALOX5AP rs17612127 have been associated with the 
disease [56]. While an association with NP has been published 
for LTC4S rs730012 [57,58], other authors did not find such 
a relationship [56].

5) Light green cluster: TAS genes

Taste receptor genes (TAS) have also been extensively 
studied in relation to NP. Mfuna-Endam et al [59] published 
an exhaustive overview of 19 TAS receptor genes, showing 
different allele frequencies between patients and controls for 
57 SNPs in TAS2R genes and 16 SNPs in TAS1R genes.
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Figure 3. Main biological functions involving the genes reported as being associated with chronic rhinosinusitis with nasal polyposis.

Figure 2. Risk of bias (A) and quality assessment (B) of the selected articles.
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Genes to miRNA

In an attempt to combine the information obtained from 
genetics and epigenetics studies, we ran the list of miRNAs 
and the list of genes using the online tool miRSystem to 
investigate synergies between the two. We found links for 25 
genes out of 99 and 37 miRNAs out of 87 (Figure 7). Among 
them, RYP and FOXP1 were connected with the largest 
number of miRNAs (15 and 14 miRNAs, respectively).  The 
miRNAs that appeared to be associated with more genes in 
the list were hsa-miR-17-5p, hsa-miR-19a-3p, hsa-miR-20a-
5p, and hsa-miR-27a-3p. 

Discussion

In this systematic review, we bring together all the 
information on the genetics and epigenetics of NP published 
since 2000. Following the PRISMA guidelines for systematic 
reviews and meta-analysis, we found 104 articles published 
between 2000 and May 2020 that fulfilled our inclusion criteria. 
We identified more than 150 genetic variants in 99 genes 
involved in the pathogenesis of NP; these variants increase 
and decrease the risk of developing NP or are associated with 
the disease. Most of the studies were of good quality, with 
a low risk of bias. We also included a search for epigenetic 
mechanisms that may underlie the pathogenesis of NP. These 
epigenetic studies focused mainly on describing the miRNAs 
involved in NP or risk of NP. The 87 miRNAs identified 
are associated with biological functions such as cell cycle, 
inflammation, and immune response. DNA methylation has 
also been compared in NP patients and healthy controls. 

Both hypomethylated and hypermethylated genes and gene 
promoters have been identified and are mostly associated 
with cancer pathways in the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) [78].

To obtain a more in-depth knowledge of the published 
data, we analyzed the information compiled using the 
many tools available online. Our analysis of genetic studies 
was based on more than 13 000 healthy controls and over 
9600 CRSwNP patients, as well as on 2 large database 
studies. Previous reviews [2,8] had already analyzed altered 
genes and associated functions in CRSwNP, although no 
thorough study of clusters has been performed to date. Eight 
main clusters were identified. Of these, the HLA gene cluster 
was the most populated one and appeared only as a cluster 
when analyzing those SNPs associated with reduced risk 
of CRSwNP, with a clear dominance of class II HLA genes 
over class I. In fact, the MHC class profile could be used 
to differentiate CRSsNP from CRSwNP, since upregulation 
of MHC-class I–mediated antigen presentation has been 
associated with CRSsNP [99].

Other critical functional clusters were those including IL 
genes (in association with TNF and NOS), leukotriene-related 
genes (ALOX5 and -15), IgE receptor-related genes (FCER), 
taste receptors (TAS-R), and CFRT. Data for several genes, 
such as TNF, TAS2R38, and NOS2, were extracted from several 
studies performed in different populations, thus reinforcing the 
role of these genes in NP. Although the role of other genes has 
not been confirmed to date, recent studies on the efficacy of 
anti-IgE omalizumab [100], anti-IL4R dupilumab [101,102], 
and anti-IL5 mepolizumab [103] suggest the involvement of 
the FCER and IL genes in NP. Mechanisms depending on 
Fc epsilon receptor (FcεR) activation have been reported to 
underlie airway inflammation and airway remodeling [102]. 
On the other hand, taste receptors seem to be associated more 
clearly with CRS [59]. 

It is worth mentioning the increased risk of CRSwNP 
associated with airway inflammation and extracellular matrix 
remodeling as per clustering analysis, which is consistent 
with the literature on relevant genes, ie, cyclooxygenase 
2 (COX2) [99], matrix metalloproteinase (MMP) 2 and 
9 [100,101], and cystic fibrosis transmembrane regulator 
(CFTR) [104]. Moreover, a transcriptomic analysis of the 
different stages of CRS, ranging from rhinitis to severe 
NP, has identified elevated expression of transcripts in 
polyps involved in extracellular matrix remodeling and 
chemoattraction of effector cells, strong induction of a 
combined IL4/IL13 signature, and decreased protease-
inhibitor expression and metabolic genes [105]. 

Another strength of the current systematic review is the 
inclusion of genetic and epigenetic mechanisms and our 
tentative approach to interconnect them. While we are aware 
that this approach is theoretical and based on software analysis 
and must be confirmed experimentally, it could be a good 
starting point for future research on the molecular mechanisms 
involved in CRSwNP. Interestingly, in the articles we reviewed, 
some of the miRNAs encoded in the MHC genes have been 
identified as being related to NP, namely, miR-152, miR-20a, 
and miR-19a. These may affect the expression of class I MHC 
molecules such as HLA-B [98].  

Figure 7. Relevant genes linked to miRNA. Genes found in the selected 
genetic articles that have been published as connected to miRNA 
identified by the selected epigenetic articles.
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Conversely, as a limitation of the present review, we 
must address the lack of proper controls in 10 of the 80 
genetic studies, while most of the epigenetic articles include 
healthy tissues as controls. Furthermore, since over 80% 
of the genes were mentioned in only 1 study, their role in 
NP remains to be confirmed. Another limitation of some 
studies was the use of databases as a source of genetic data 
in healthy controls. While databases are easily accessible 
repositories of gene variation, critical clinical information 
about the patients is likely ignored. Therefore, it cannot be 
ruled out that the "supposedly" healthy population included 
mild cases of relevant atopy or asthma that could undermine 
the conclusions. 

As CRS is a feature of cystic fibrosis in White populations, 
mutations in the cystic fibrosis transmembrane regulator 
gene (CFTR), a chloride channel of the plasma membrane, 
have also been associated with NP [68]. However, other 
authors did not find such an association [69]. For patients 
who were heterozygous for ∆F508 and a residual function 
allele, tezacaftor plus ivacaftor was found to improve lung 
function (FEV1) when compared with placebo and ivacaftor 
alone [106]. This treatment has already been approved for 
∆F508 carriers [2]. In a prospective study in the Netherlands, 
ivacaftor proved efficacious in NP in patients harboring the 
S125N mutation [107].

Finally, we cannot forget the new field of medical care 
resulting from exploration the therapeutic potential of 
miRNAs. Several ongoing clinical trials are testing the safety 
and efficacy of miRNAs for the diagnosis and treatment of 
diverse cancers [108]. Opening the field to other diseases, such 
as CRS, will undoubtedly be worth the effort.

Final Remarks

This systematic review aimed to bring together all the 
available information on the genetics and epigenetics of 
CRSwNP. The more than 100 articles reviewed provided 
data on multiple SNPs and genetic variants associated 
with the risk of developing the disease, which was both 
increased and reduced. Furthermore, several miRNAs and 
other epigenetic traits have been identified as differentially 
expressed in CRSwNP patients. Clusters of genes and the 
potential relationship between miRNAs and genes have 
been proposed. New lines of research are open for further 
investigation.
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