Original Article

Anaphylaxis to *Vespa velutina nigrithorax*: Pattern of Sensitization for an Emerging Problem in Western Countries

Vidal C1,2, Armisén M1, Monsalve R3, González-Vidal T1, Lojo S4, López-Freire S1, Méndez P1, Rodríguez V1, Romero L1, Galán A3, González-Quintela A2,5
1Allergy Department, Complejo Hospitalario Universitario de Santiago, School of Medicine, University of Santiago de Compostela, Spain
2Spanish Network for Addictive Disorders (Red de Trastornos Adictivos, RD16/0017/0018), Spain
3CMC R&D (Chemistry, Manufacturing and Control Research and Development), ALK-Abelló, Madrid, Spain
4Department of Biochemistry, Complejo Hospitalario Universitario de Santiago, Santiago de Compostela, Spain
5Department of Medicine, Complejo Hospitalario Universitario de Santiago, Faculty of Medicine, University of Santiago de Compostela, Spain

J Invest Allergol Clin Immunol 2021; Vol. 31(3): 228-235
doi: 10.18176/jiaci.0474

Abstract

Objective: To define the sensitization pattern of patients with anaphylaxis to *Vespa velutina nigrithorax* (VVN).

Methods: We studied 100 consecutive Spanish patients with anaphylaxis to Hymenoptera venom and systematically determined specific IgE (sIgE) to whole venoms (*Vespula* species, *Polistes dominula*, *Apis mellifera*, *Vespa crabro*, and *Dolichovespula maculata*) and their molecular components (r*Api m* 1, r*Api m* 5, r*Api m* 10, r*Ves v* 1, r*Ves v* 5, r*Pol d* 5, and cross-reactive carbohydrates). Specific IgE to VVN venom and its antigen 5 (n*Vesp v* 5) were measured in a subsample.

Results: Seventy-seven patients had anaphylaxis to VVN. Of these, only 16 (20.8%) reported previous VVN stings, but were stung by other Hymenoptera. Positive sIgE (>0.35 kUA/L) to each of the whole venoms was detected in >70% of patients (*Vespula* species in 100%). The components showing >50% positivity were r*Api m* 5 (51.4%), r*Pol d* 5 (80.0%), and r*Ves v* 5 (98.7%). This pattern was similar to that of *Vespula* species anaphylaxis (n=11) but different from that of *A mellifera* anaphylaxis (n=10). Specific IgE to n*Vesp v* 5 was positive in all patients (n=15) with VVN anaphylaxis and was correlated with sIgE to both r*Ves v* 5 (R=0.931) and r*Pol d* 5 (R=0.887).

Conclusions: VVN has become the commonest cause of Hymenoptera anaphylaxis in our area. Most cases report no previous VVN stings. Their sensitization pattern is similar to that of patients with anaphylaxis to other *Vespidae*. Specific IgE to antigen-5 from VVN, *Vespula* species, and *P dominula* are strongly correlated in patients with VVN anaphylaxis.

Resumen

Objetivo: Definir el patrón de sensibilización alérgica de pacientes con anafilaxia por *Vespa velutina nigrithorax* (VVN), un problema emergente en países occidentales.

Métodos: Se estudió una población de 100 pacientes adultos con anafilaxia por veneno de himenóptero en España. Se determinó IgE específica frente a los venenos completos de *Vespula* spp, *Polistes dominula*, *Apis mellifera*, *Vespa crabro*, *Dolichovespula maculata*, y algunos de sus componentes moleculares (r*Api m* 1, r*Api m* 5, r*Api m* 10, r*Ves v* 1, r*Ves v* 5, r*Pol d* 5, carbohidratos [MUXF]). En una muestra de 15 pacientes con anafilaxia por VVN se determinó la IgE específica frente a este veneno completo y al antígeno 5 de VVN (denominado n*Vesp v* 5).

Resultados: Setenta y siete pacientes (77,0%) padecieron anafilaxia por VVN. De ellos, solo 16 (20,8%) habían padecido picaduras previas por VVN; los restantes 84 (80,2%) no habían padecido picaduras previas por VVN. Más del 70% de los pacientes con anafilaxia por VVN presentaron IgE específica positiva (>0,35 kUA/L) frente a cada uno de los venenos completos estudiados (el 100% en el caso de *Vespula* spp). Los componentes moleculares reconocidos por la IgE de más del 50% de los pacientes fueron r*Api m* 5 (51,4%), r*Pol d* 5 (80,0%), y r*Ves v* 5 (98,7%). Este patrón de sensibilización fue similar al de los pacientes con anafilaxia por *Vespula* spp (n=11) pero diferente al de los pacientes con anafilaxia por *A mellifera* (n=10). La IgE específica frente a n*Vesp v* 5 fue positiva en el 100% de los pacientes con anafilaxia por VVN (n=15) y se correlacionó con la IgE específica frente a r*Ves v* 5 (R=0,931) y r*Pol d* 5 (R=0,887).

Conclusiones: VVN es la principal especie de himenóptero responsable de anafilaxia en nuestra área. El perfil de sensibilización es similar al de los pacientes con anafilaxia por otros *Vespidae*. La IgE específica frente al antígeno 5 de VVN, *Vespula* spp, y *Polistes dominula* se correlaciona estrechamente en los pacientes con anafilaxia por VVN.

Introduction

Alien species causing biological invasions are recognized as a significant problem nowadays, primarily because of the impact on biodiversity, but also because they cause new health problems. *Vespa velutina nigrithorax* (VVN), commonly known in Spain as Asian wasp, is one of the 12 color variants of *Vespa velutina Lepeletier* 1836, which is naturally distributed in Asia from Afghanistan to eastern China, Indochina, and Indonesia [1]. The first record of the presence of VVN in Europe was in 2005 in Lot-et-Garonne, France, where it was thought to have arrived in 2004 [2]. This unexpected invasion seems to have been due to an accidental transport of at least 1 hibernating founder queen in pottery or other horticultural commercial products from China (bonsai tree) [3,4]. From that moment onwards, VVN has spread rapidly across France [5-7] and the Basque Country in the North of Spain [8]. In 2011, Villedemant et al [7] published an interesting model predicting the future invasion of VVN. The model predicted that many countries in western Europe had a high probability of being invaded, with the highest risk being along the Atlantic and northern Mediterranean coasts. Coastal areas of the Balkan Peninsula, Turkey, and Near East also appeared suitable and could potentially be colonized later [7]. Other parts of the world with high climatic suitability for this species could also be threatened by VVN, since the species could enter again through international trade [7]. This prediction is now a reality, since VVN has spread into Spain (particularly in the north and northwestern areas (information available at http://webs-gis.cesga.es/velutina/), Portugal, Italy, and the UK [4,9,10]. In Galicia, a region in the northwest of Spain, more than 47 394 nests were identified and 24,196 retrieved and destroyed in 2018 (compared to 769 in 2014) (Consellería de Medio Rural, Xunta de Galicia).

Vespa velutina is one of the most aggressive and feared Hymenoptera species in China, where it is known as killer wasp, because it causes a number of deaths every year [11]. Most affected persons die after multiple stings because of multiple organ dysfunction induced by toxins in the venom [11,12]. Apart from these toxic effects, *V velutina* can provoke allergic reactions similar to those caused by other Hymenoptera species. In fact, up to 6 deaths after VVN stings, presumably due to fatal allergic reactions, were reported by the media in Spain in 2017 and 2018 (5 in the northwest). For that reason, the population of the north and northwest of Spain has been alerted to the presence of VVN, and specific political campaigns have been activated to fight against the invasion. The first well-identified case of anaphylaxis due to VVN in Spain was reported in 2014 [13]. The first patient with anaphylaxis to VVN in our area was detected in June 2015. Two additional cases were seen in 2016 and 9 in 2017. This increase in the frequency of anaphylaxis to VVN and the lack of commercially available assays for identifying specific IgE (sIgE) against VVN or its components led us to initiate the present study. Our objective was to identify the sensitization profile of patients with anaphylaxis to VVN and to compare it with that of patients who experience anaphylaxis caused by other Hymenoptera. We used commercially available sIgE determinations against both the whole venom and molecular components of *Vespula* species, *Polistes dominula*, *Apis mellifera*, *Vespa crabro*, and *Dolichovespula maculata*. We also aimed to investigate the usefulness of a customized test to detect VVN-sIgE based on binding biotin to the whole venom extract and to its purified components, phospholipase and antigen 5 (namely Vesp v 1 and Vesp v 5).

Patients and Methods

Study Population and Design

We performed a cross-sectional study in which we prospectively enrolled all adult individuals with anaphylaxis due to Hymenoptera venom who attended our Allergy Department for the first time between December 2017 and June 2019. Our institution is a reference teaching hospital in northwest Spain. Patients were submitted from either primary care or the emergency department after experiencing an anaphylactic reaction to Hymenoptera sting. Patients with large local reactions were not included in the study. The hospital covers an area of approximately 500 000 people, of whom nearly 90 000 live in the city of Santiago de Compostela and the remainder in primarily rural areas. All eligible patients (n=100) agreed to participate. The median age was 63 years (range, 20-90 years), and 87 (87.0%) were males. Most patients (97 [97%]) lived in a rural environment, and 57 (57%) worked outdoors, thus leading them to be considered at high risk of exposure.

A physician-administered structured questionnaire was completed for every patient to obtain a series of data: (a) identification of the Hymenoptera species involved in the reaction (bees, common wasps, and VVN); (b) recall of previous Hymenoptera stings (bees, common wasps, and VVN); (c) a history of previous systemic reactions after Hymenoptera stings; (d) time elapsed between exposure to Hymenoptera venom and when symptoms and appearance of the first signs; (e) signs and symptoms reported by the patient; (f) signs and symptoms reported by doctors who treated the patient after the reaction; and (g) history of Hymenoptera stings after the reported reaction and before entering the study. The severity of the systemic reaction was classified based on the information recorded and divided into 3 categories: mild (skin and subcutaneous lesions plus nonspecific general symptoms), moderate (features suggesting respiratory, cardiovascular, or gastrointestinal involvement), and severe (hypoxia, hypotension, or neurologic compromise) (adapted from [14]), as accepted for systemic reactions to Hymenoptera venom [15]. Information was recorded between 15 and 30 days after the reaction and all laboratory determinations were performed in serum samples obtained under baseline conditions 1-2 months after the reaction. Finally, and following the recommendations of the European Competence Network on Mastocytosis, we recorded the Spanish Mastocytosis Network (REMA) score [16] to calculate the risk of a clonal mast cell disorder that could increase the severity of the reaction.

Laboratory Determinations

Commercially available specific IgE

Allergen sIgE was measured using the ImmunoCAP-250 system (Thermo Fisher Scientific) and included sIgE against *Vespula* species, *P dominula*, *A mellifera*, *V crabro*, *D maculata*, r Api m 1, r Api m 5, r Api m 10, r Ves v 1, r Ves v 5, r Pol d 5, and MUXF (o214) as a marker of cross-reactive carbohydrate
Serum tryptase was determined using the ImmunoCAP 250 tryptase assay (Thermo Fisher Scientific).

Statistical Analyses

The chi-square test (with continuity correction and analysis of trend, when needed) was used to compare proportions. The Mann-Whitney test was used to compare numerical variables between groups. The Jonckheere-Terpstra test was used to analyze the trend of numerical variables in relation to ordinal categories. The Pearson test was used to assess correlation. Linear regression was used to predict the value of a dependent variable (VVN-sIgE) based upon the values of independent variables (commercially available sIgE to related allergens).

Ethics

The study was approved by the Institutional Ethics Committee and complied with the recommendations of the Declaration of Helsinki. Written informed consent was obtained from all participants.
Results

Clinical Data

Seventy-seven patients (77.0%) identified VVN as the insect responsible for the reaction. Only 11 (11.0%) and 10 (10.0%) patients identified the common wasp (Vespula species) and honeybee (A mellifera) as the culprit insect, respectively. Two patients (2%) did not recognize the insect involved in the reaction.

All patients with anaphylaxis to Vespula species and A mellifera reported previous stings by the culprit insect. In contrast, only 20.8% (16/77) of patients with anaphylaxis to VVN reported a previous sting by this species. However, all patients with anaphylaxis to VVN reported previous stings by either Vespula species (75/77, 97.4%) or A mellifera (41/77, 53.2%). Twenty-three patients reported past episodes of anaphylaxis before the present attack, even though they had not been sent for evaluation (14 episodes related to Vespula species, 5 to VVN, and 4 to A mellifera). No additional stings were recorded after the last systemic reaction and before inclusion in the study. No differences were found regarding the culprit insect with respect to age, sex, environment (rural or urban), or occupation (outdoors or indoors) (Table 1).

Most reactions happened in the first 15 minutes after the sting, with no differences regarding the culprit insect (Table 1). The anaphylactic reaction was mild in 17 cases (17%), moderate in 45 (45%), and severe in 38 (38%) cases. Severity of anaphylaxis to VVN was similar to that of anaphylaxis to Vespula species or A mellifera (Table 1). Adrenaline was used in 48 patients (48%): the more severe the reaction, the more frequent the use of adrenaline (17.6% in mild reactions, 44.4% in moderate reactions, and 65.8% in severe reactions; P<.001, trend test). Baseline serum tryptase levels (available for all patients) tended to increase with the severity of the anaphylactic reaction. Median tryptase was 3.9 ng/mL (3.6-5.4 ng/mL), 4.5 ng/mL (3.5-5.9 ng/mL), and 5.4 ng/mL (4.3-6.7 ng/mL), in patients with mild, moderate, and severe reactions, respectively (P=.015, trend test). However, serum tryptase levels were similar in patients with anaphylaxis to VVN, Vespula species, and A mellifera (Table 2). The REMA score was <2 in 98 patients. Only 2 patients, both of whom belonged to the VVN group, had a REMA score higher than 2, although the hematological study performed enabled us to rule out the presence of a clonal mast cell disorder.

Sensitization Profile

Commercially available specific IgE determinations

Specific IgE against Vespula species was available in 76/77 patients with anaphylaxis to VVN, and results were positive (>0.35 kU/L) for all of them. Most patients with anaphylaxis to VVN (70%) also had positive sIgE to the whole venom extract of D maculata, P dominula, V crabro, and A mellifera, in that order (Figure 1). Regarding molecular components, patients with anaphylaxis to VVN had positive sIgE to Vespula species rVes v 5 more frequently than to rVes v 1. Specific IgE to P dominula rPol d 5 was present in most patients with anaphylaxis to VVN. The only molecular component from A mellifera with a positive sIgE rate >50% in patients with anaphylaxis to VVN was rApi m 5 (Figure 1).

Patients with anaphylaxis due to VVN had similar levels of sIgE against Vespula species, P dominula, rVes v 1, rVes v 5, rPol d 5, D maculata, and V crabro than patients with anaphylaxis due to Vespula species. In contrast, patients

| Table 2. Laboratory Data for Study Patients Stratified by Culprit Insect |
|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| | Culprit Insect | | |
| | Vespula species | Vespula velutina nigrithorax | Apis mellifera |
| | n Median (IQR) | n Median (IQR) | n Median (IQR) |
| Serum specific IgE, kU/L | | | |
| MUXF | 11 0.20 (0.00-0.92) | 77 0.05 (0.00-0.34) | 10 0.09 (0.00-1.55) |
| A mellifera | 11 1.12 (0.31-3.79) | 76 0.91 (0.22-3.67) | 10 7.48 (2.88-27.4) |
| rApi m 1 | 10 0.07 (0.00-0.35) | 76 0.01 (0.00-0.12) | 10 2.45 (1.50-7.79) |
| rApi m 5 | 10 1.17 (0.11-10.2) | 72 0.50 (0.00-3.93) | 9 1.15 (0.02-15.4) |
| rApi m 10 | 10 0.04 (0.01-0.07) | 75 0.03 (0.00-0.86) | 10 0.31 (0.04-2.25) |
| Vespula species | 11 14.0 (8.51-57.3) | 76 5.38 (2.03-14.2) | 9 0.08 (0.00-7.23) |
| rVes v 1 | 11 0.07 (0.03-5.98) | 77 0.15 (0.03-1.44) | 9 0.00 (0.00-1.29) |
| rVes v 5 | 11 12.4 (0.52-65.0) | 76 4.45 (1.48-12.3) | 9 0.00 (0.00-0.75) |
| Polistes dominula | 11 4.22 (2.95-36.1) | 77 1.54 (0.41-6.72) | 9 0.06 (0.00-2.43) |
| rPol d 5 | 11 6.89 (0.85-15.7) | 75 1.65 (0.50-8.31) | 9 0.01 (0.00-0.57) |
| Dolichovespula m | 7 4.78 (1.10-13.5) | 76 1.34 (0.42-4.05) | 8 0.15 (0.00-8.85) |
| Vespula crabro | 7 2.98 (0.98-3.79) | 75 0.93 (0.34-3.34) | 9 0.02 (0.00-8.48) |
| Serum total IgE, kU/L | 11 189 (126-264) | 76 78.5 (33.0-198) | 10 45.0 (16.2-182) |
| Serum tryptase, ng/mL | 11 4.3 (3.5-5.2) | 77 5.1 (3.9-6.4) | 10 4.5 (4.1-6.3) |

Abbreviations: MUXF (o214), marker of cross-reactive carbohydrate determinant; Dolichovespula m, Dolichovespula maculata.

aVVN vs VV, comparison of Vespa velutina nigrithorax with Vespula species.

WVN vs AM, comparison of Vespa velutina nigrithorax with Apis mellifera.
with anaphylaxis to VVN had lower levels of sIgE against *A mellifera* and its main allergen, rApi m 1, than patients with anaphylaxis to *A mellifera*. Of note, sIgE levels to rApi m 5, rApi m 10, rVes v 1, and the CCD marker (MUXF, o214) were similar in all patients, irrespective of the culprit insect (Table 2).

Patients with anaphylaxis to *Vespula* species presented higher levels of total IgE than patients with anaphylaxis to VVN or *A mellifera* (Table 2). A similar profile was observed when concentrations of venom-specific IgE were considered in relation to total IgE, ie, patients with anaphylaxis to VVN displayed a pattern of sIgE sensitization similar to that of patients with anaphylaxis to *Vespula* species and different from that of patients with anaphylaxis to *A mellifera* (Table 3).

Customized specific IgE determinations

In a subsample of 15 patients with anaphylaxis to VVN, 13 (86.6%) had positive sIgE (>0.35 kU/L) to a whole

Figure 1. Percentage of patients with anaphylaxis due to *Vespa velutina nigrithorax* and positive sIgE (>0.35 kU/L) to whole Hymenoptera venoms (*Vespula* species [n=76], *Polistes dominula* [n=77], *Apis mellifera* [n=76], *Vespa crabro* [n=75], and *Dolichovespula maculata* [n=76], left side) and their molecular components (rApi m 1 [n=76], rApi m 5 [n=72], rApi m 10 [n=75], rVes v 1 [n=77], rVes v 5 [n=76], rPol d 5 [n=75], and o214 [MUXF, as a CCD marker, n=77], right side). Each venom and its molecular components are represented with the same color to facilitate identification.

Figure 2. Scatterplots representing the relationship between serum specific IgE to rVes v 5 and rPol d 5 and specific IgE to *Vespa velutina nigrithorax* antigen 5 (nVesp v 5). Linear regression models were constructed to predict nVesp v 5 concentrations as a function of rVes v 5 and rPol d 5 concentrations, thus explaining 86% and 78% of the variability of nVesp v 5, respectively.

Table 3. Ratio of Serum Specific IgE to Serum Total IgE for Study Patients Stratified by Culprit Insect

<table>
<thead>
<tr>
<th>Culprit Insect</th>
<th>Vespa velutina nigrithorax</th>
<th>Apis mellifera</th>
<th>P Value***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vespa velutina nigrithorax</td>
<td>n Median (IQR)</td>
<td>n Median (IQR)</td>
<td>n Median (IQR)</td>
</tr>
<tr>
<td>Vespa species</td>
<td>11 0.51 (0.34-1.43)</td>
<td>76 1.07 (0.31-2.92)</td>
<td>10 16.7 (12.3-38.3)</td>
</tr>
<tr>
<td>Polistes dominula</td>
<td>11 8.45 (5.93-21.0)</td>
<td>75 5.54 (3.12-15.7)</td>
<td>9 0.22 (0.0-1.64)</td>
</tr>
<tr>
<td>Vespa crabro</td>
<td>11 3.27 (1.01-13.8)</td>
<td>76 2.02 (0.84-5.63)</td>
<td>9 0.18 (0.0-4.16)</td>
</tr>
<tr>
<td>Dolichovespula maculata</td>
<td>7 1.12 (0.58-3.46)</td>
<td>74 1.91 (0.59-3.35)</td>
<td>9 0.11 (0.0-1.81)</td>
</tr>
</tbody>
</table>

***VVN vs VV, comparison of *Vespa velutina nigrithorax* with *Vespula* species. VVN vs AM, comparison of *Vespa velutina nigrithorax* with *Apis mellifera.*
venom extract of VVN. Levels of sIgE to VVN were low (median [IQR], 1.1 kU/L [0.12-20.5 kU/L]). Using the same methodology, 100% of these patients presented positive sIgE to nVesp v 5, while only 28.8% presented positive sIgE levels to nVesp v 1. Median (IQR) levels of sIgE to nVesp v 5 (2.71 [0.52-37.2 kU/L], n=15) tended to be higher than those of sIgE to nVesp v 1 (0.17 kU/L, [0.99-27.1 kU/L], n=14) and tended to be higher than those of sIgE to whole venom extract of VVN (2.71 [0.52-37.2 kU/L], n=15). A significant correlation was found between sIgE to VVN and sIgE to *Vespa* species (R=0.669, P=0.009), *P dominula* (R=0.620, P=0.014), *D maculata* (R=0.973, P<0.001), and *V crabro* (R=0.968, P<0.001). There was also a strong correlation between sIgE to nVesp v 5 and sIgE to rVes v 5 (R=0.931, P<0.001) and between sIgE to nVesp v 5 and rPol d 5 (R=0.887, P<0.001). Figure 2 shows a scatterplot of nVesp v 5 in relation to rVes v 5 and rPol d 5 and linear regression parameters to predict the level of sIgE to nVesp v 5, given the values of rVes v 5 and rPol d 5. Finally, no significant correlation was found between sIgE to nVesp v 1 and sIgE to rVes v 5 and rPol d 5. Therefore, no significant correlation was found between sIgE to antigen 5 from VVN and sIgE to antigen 5 from *Vespa* species in the same patients. Taken together, these findings suggest a degree of cross-reactivity between VVN and other *Vespa* species, which may be important for sensitization and relevant for diagnostic and therapeutic purposes.

Our data confirm anaphylaxis to VVN to be a significant emerging problem. The number of patients reporting anaphylaxis to VVN has increased exponentially from the first case in 2015 in our area. The number of incident cases of anaphylaxis to VVN has expanded, we found only 1 case of VVN anaphylaxis in the literature, corresponding to the first case described in 2014 in Spain [13]. While cases of VVN anaphylaxis are commonly reported by the mass media in Spain, underreporting of epidemiological, clinical, and immunological characteristics of VVN anaphylaxis prompted us to report this series in an attempt to fill the knowledge gap for this emerging, relevant clinical problem.

Importantly, most of the patients who experienced anaphylaxis to VVN did not recall previous stings from the insect. This fact, together with the results of sIgE determinations, supports the idea that, in our study, allergic reactions to VVN may develop after stings by other Hymenoptera, mainly *Vespa* species. It could also explain why patients reported here more frequently reacted against *Vespa* species than against *V crabro*, which is nearer to VVN than *Vespa* species. Likewise, cases of anaphylaxis to *Vespa orientalis* (a different member of the *Vespidae* family) without previous stings by this insect were reported in American soldiers deployed in Afghanistan [20]. The existence of cross-reactivity among allergens from different *Vespidae* could explain these reactions [18,21-23]. The specific reasons for potentially increased susceptibility to VVN anaphylaxis after sensitization via different *Hymenoptera* species are not known.

Most of the anaphylactic reactions to VVN were moderate to severe. The proportion of cases with moderate-to-severe reactions was similar to that of reactions to *Vespa* species and *A mellifera* in the present series. Our data cannot answer the question of potentially more frequent anaphylaxis after VVN sting than after sting by other Hymenoptera species. Taking into account the size of VVN, a more severe reaction could be expected, as occurs with *V crabro* sting, which is known to induce 3 times more life-threatening reactions than *Vespula* species or *A mellifera* stings [22]. Of note, 5 deaths after a VVN sting were reported during 2017 and 2018 in the Galicia region of Spain, which is home to some 2.7 million people. Thus, the number of deaths attributable to VVN was higher than expected for the general population according to a UK national database that sets the risk of death from Hymenoptera stings at 0.09 cases per million inhabitants per year (95%CI, 0.07-0.10) [24]. These observations further support the clinical importance of emerging VVN anaphylaxis.

The lack of specific tools to diagnose and treat patients who are allergic to VVN is challenging for physicians, who must choose the best therapeutic option. In the population studied, all patients with anaphylaxis to VVN presented sIgE to *Vespula* species, and almost all of them presented sIgE to rVes v 5 and to rPol d 5. We also confirmed the presence of sIgE to antigen 5 from VVN by using the novel allergen nVesp v 5 in all cases from a subsample of patients with anaphylaxis to VVN. Of note, sIgE to antigen 5 from *Vespa* species, *P dominula*, and VVN was closely correlated in patients with VVN anaphylaxis. Hence, antigen 5 from VVN appears to be a good candidate as a major allergen. In contrast, a poorer diagnostic value was recorded for nVesp v 1. In addition, sIgE to rApi m 5 (dipeptidyl peptidase IV, which is homologous to Ves v 3 from *Vespula* species) [25] was detected in more than 50% of patients with anaphylaxis to VVN; consequently, it could also be considered a major allergen. The fact that more than 70% of patients with...
anaphylaxis to VVN reacted against all the venoms used in
the study suggests a high level of cross-reactivity that cannot
be explained though sensitization to CCD. Therefore, further
studies are needed to identify other relevant allergens in VVN
venom that would likely react to other venoms as well.

Analogies in the sensitization profile of patients who
experience anaphylaxis to VVN and Vespa species led us to
systematically use a commercially available immunotherapy
regimen based on Vespa species (data not shown). To date, only 5 patients with anaphylaxis to VVN and treated with
Vespa species venom were stung by VVN after initiating
immunotherapy, and none presented systemic reactions (data
not shown). Likewise, immunotherapy with Vespa species
in patients with anaphylaxis to Vespa orientalis has been proven to be
efficacious [23], and immunotherapy with Vespa species
was efficacious in patients with anaphylaxis to Vespa crabro [26].
Further studies are needed to develop specific immunotherapy
for VVN, and a longer follow-up is needed to support the
efficacy of immunotherapy initiated in the patients we
treat. Meanwhile, commercially available Vespa-based
immunotherapy seems to be a wise option in patients with
VVN anaphylaxis.

Our study is subject to a series of limitations. First, the cause
of anaphylaxis was classified according to the identification
of the culprit insect provided by the patients, because
samples of the insects were not available. Classification is
always problematic when dealing with anaphylaxis due to
Hymenoptera species. However, the fact that almost all patients
live or work in a rural environment, where Hymenoptera are
easily recognized, decreases the risk of misidentification.
Besides, given that VVN has become very well-known in our
region as a result of its proliferation, photographs of insects
and their nests are frequently displayed in local newspapers
and on television. The reason 2 patients were unable to
identify the culprit insect was that they had not seen it. Second,
determinations of sIgE to VVN venom and nVesp v 5 were
available for a small subsample of patients; therefore, findings
should be confirmed in larger studies. Finally, as already
mentioned, further molecular and follow-up studies are needed
to add information to the profile and outcome of patients that
cannot be provided from this preliminary, cross-sectional study.

In conclusion, anaphylaxis to VVN is a relevant, emerging
problem and has quickly become the most common type
of Hymenoptera anaphylaxis in our area. Similarities in
sensitization profile between VVN and other Vespidae
(particularly Vespa species) could help in the diagnosis and
treatment of VVN anaphylaxis when specific determinations
and immunotherapy are not readily available.

Acknowledgments

The authors thank Emilia Martínez Lourido for helping with
the collection and storage of serum samples.

Funding

The study was supported by the Instituto de Salud
Carlos III (Fondo de Investigaciones Sanitarias, Spanish
Ministry of Health, PI16/1401 and PI19/01023) and Fundación
de la Sociedad Española de Alergología e Immunología Clínica
(SEAIC).

Conflicts of Interest

Carmen Vidal reports grants from Fundación SEAIC and
grants from Instituto Carlos III during the conduct of the study.
Rafael Monsalve is an employee of ALK-Abelló.
Agustín Galán is an employee of ALK-Abelló.
The remaining authors declare that they have no conflicts
of interest.

References

Geographic variation of melanisation patterns in a hornet
species: genetic differences, climatic pressures or aposematic
2. Haxaire J, Bouquet JP, Tamisier JP. Vespa velutina Lepeletier,
1836, une redoutable nouveauté pour la faune de France
invasive predator of honeybees in Europe. Journal of Pest
Science. 2014;87:1-16.
A, et al. Reconstructing the invasion and the demographic
history of the yellow-legged hornet, Vespa velutina, in Europe.
Biological Invasions. 2015;17:2357-71.
5. Villemant C, Haxaire J, Streito JC. Premier bilan de l’invasion
de Vespa velutina Lepeletier en France (Hymenoptera, Vespidae).
de l’invasion de Vespa velutina Lepeletier en France
O, Jiguet F, et al. Predicting the invasion risk by the alien
bee-hawking yellow-legged hornet Vespa velutina nigrithorax
across Europe and other continents with niche models.
8. Castro L, Pagola-Carte S. Vespa velutina Lepeletier, 1836
(Hymenoptera : Vespidae), recolectada en la Península Ibérica.
9. Monceau K, Thiery D. Vespa velutina nest distribution at a local
scale: an 8-year survey of the invasive honeybee predator.
Insect Science. 2016;00:01-12.
J, Tomkies V, et al. The invasion, provenance and diversity of
Vespa velutina Lepeletier (Hymenoptera : Vespidae) in Great
the venomic transcriptome of killer-wasp Vespa velutina.
severe wasp sting patients with dominantly toxic reaction:
13. Chugo S, Lizaro MT, Alvarez MJ, Arrobaen E, Lizarza S,
Tabar AI. Vespa velutina nigrithorax: a new causative agent

Manuscript received September 6, 2019; accepted for publication December 16, 2019.

Carmen Vidal

Allergy Department
Complejo Hospitalario Universitario de Santiago
Faculty of Medicine, University of Santiago
Rúa Ramón Baltar, s/n
15706 Santiago de Compostela, Spain
E-mail: carmen.vidal.pan@sergas.es