Compassionate Use of a Single Dose of Benralizumab in a Near-Fatal Asthma Exacerbation

Pérez de Llano L, Blanco Cid N, Ortiz Piquer M, Dacal Rivas D
1Pneumology Service, Hospital Lucus Augusti, Lugo; EOXI Lugo, Cervo e Monforte, Lugo, Spain
2Intensive Care Unit, Hospital Lucus Augusti, Lugo; EOXI Lugo, Cervo e Monforte, Lugo, Spain

J Investig Allergol Clin Immunol 2021; Vol. 31(3): 253-279
doi: 10.18176/jiaci.0609

Key words: Asthma. Benralizumab. Asthma attack. Asthma exacerbation.

A 23-year-old male active smoker who occasionally used illicit drugs (cocaine and marijuana) and had been diagnosed with early-onset allergic asthma was admitted to the respiratory care unit for a severe asthma exacerbation. His medical history included several hospital admissions during childhood (the last of them at the age of 8 years), positive skin prick test results for house dust mites, and an average of 2 severe exacerbations per year. The patient acknowledged that he had stopped maintenance beclomethasone dipropionate and formoterol fumarate during the preceding 6-8 weeks and had only taken albuterol several times a day. On admission, the patient’s vital signs were as follows: temperature, 37.3°C; blood pressure, 130/65; pulse, 98 bpm; respiratory rate, 40 breaths/min. Blood cultures and antigen tests for detection of *Streptococcus pneumoniae* and *Legionella pneumophila* in urine were negative. Polymerase chain reaction (buccal swab) for influenza A, influenza B, and respiratory syncytial virus was negative. Blood arterial gas analysis revealed hypercapnia (PaCO$_2$, 6.9 mmHg; blood pressure, 52 mmHg), and the blood eosinophil count was 600/µL. Values for C-reactive protein and procalcitonin were normal. Toxicology testing for illicit drugs was negative. Initial treatment included supplemental oxygen, short-acting β$_2$ agonists, and intravenous methylprednisolone (40 mg/6 h). Despite these treatments, the patient’s clinical condition deteriorated, and intravenous magnesium and intravenous aminophylline were added to this regimen. However, the patient developed respiratory acidosis (PaCO$_2$, 52 mmHg; pH, 7.27) and was transferred to the intensive care unit (ICU), where he underwent orotracheal intubation and mechanical ventilation the day after admission.

Mechanical ventilation and intensive therapy with the aforementioned medications did not improve his respiratory status (Table). Because of the persistent critical clinical status and the eosinophilia at admission, we decided to administer subcutaneous benralizumab 30 mg on the fourth day of ICU admission. Because the patient was unconscious, informed consent was obtained from his mother. His respiratory condition improved considerably 4 days after administration of benralizumab, with normalization of pH and decreased peak inspiratory pressure and airway resistance (Table). The patient was extubated on ICU day 13, that is, 9 days after his benralizumab injection, and recovered completely. The methylprednisolone dose was tapered from day 4 after the injection until day 16, and the patient was discharged 25 days after admission.

As far as we know, this is the first published case of compassionate use of the anti-IL-5Rα humanized IgG1κ monoclonal antibody benralizumab [1] in a patient who needed mechanical ventilation because of a near-fatal asthma attack.

Table. Blood Gas Values and Respiratory Mechanics Before and After Administration of Benralizumab

<table>
<thead>
<tr>
<th>Variables</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>+1</th>
<th>+2</th>
<th>+3</th>
<th>+4</th>
<th>+5</th>
<th>+6</th>
<th>+7</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.29</td>
<td>7.31</td>
<td>7.32</td>
<td>7.37</td>
<td>7.37</td>
<td>7.37</td>
<td>7.31</td>
<td>7.35</td>
<td>7.32</td>
<td>7.34</td>
<td>7.34</td>
<td>7.41</td>
</tr>
<tr>
<td>PaCO$_2$</td>
<td>52</td>
<td>61</td>
<td>70.3</td>
<td>61.5</td>
<td>72.5</td>
<td>82.1</td>
<td>78.8</td>
<td>83.6</td>
<td>75.8</td>
<td>63.7</td>
<td>53.6</td>
<td>42.6</td>
</tr>
<tr>
<td>PaO$_2$</td>
<td>46.5</td>
<td>99.5</td>
<td>103</td>
<td>69.2</td>
<td>61.4</td>
<td>59</td>
<td>52.8</td>
<td>98.8</td>
<td>93.6</td>
<td>158</td>
<td>76.2</td>
<td>93</td>
</tr>
<tr>
<td>FiO$_2$ (%)</td>
<td>50</td>
<td>39</td>
<td>34</td>
<td>34</td>
<td>39</td>
<td>43</td>
<td>42</td>
<td>46</td>
<td>44</td>
<td>39</td>
<td>39</td>
<td>43</td>
</tr>
<tr>
<td>TV (mL)</td>
<td>536</td>
<td>442</td>
<td>484</td>
<td>512</td>
<td>466</td>
<td>507</td>
<td>500</td>
<td>531</td>
<td>615</td>
<td>722</td>
<td>816</td>
<td>585</td>
</tr>
<tr>
<td>MV (L/min)</td>
<td>12.3</td>
<td>10.5</td>
<td>11.4</td>
<td>12.2</td>
<td>10.5</td>
<td>9.6</td>
<td>7.3</td>
<td>9.2</td>
<td>9.9</td>
<td>10.4</td>
<td>9.7</td>
<td>11.7</td>
</tr>
<tr>
<td>PIP (cm H$_2$O)</td>
<td>41</td>
<td>35</td>
<td>36</td>
<td>35</td>
<td>30</td>
<td>29</td>
<td>41</td>
<td>36</td>
<td>24</td>
<td>22</td>
<td>25</td>
<td>23</td>
</tr>
<tr>
<td>mAWP (cm H$_2$O)</td>
<td>15</td>
<td>15</td>
<td>18</td>
<td>17</td>
<td>11</td>
<td>13</td>
<td>18</td>
<td>18</td>
<td>12</td>
<td>13</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>PEEP (cm H$_2$O)</td>
<td>6</td>
<td>6</td>
<td>10</td>
<td>9</td>
<td>1</td>
<td>6</td>
<td>12</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Raw (cm H$_2$O/L/sg)</td>
<td>126.83</td>
<td>114.28</td>
<td>94.73</td>
<td>88.52</td>
<td>108.57</td>
<td>100</td>
<td>189.04</td>
<td>117.39</td>
<td>72.72</td>
<td>51.92</td>
<td>49.48</td>
<td>46.15</td>
</tr>
</tbody>
</table>

Abbreviations: FiO$_2$, fraction of inspired oxygen; mAWP, mean airway pressure; MV, minute ventilation; PaCO$_2$, indicates partial pressure of carbon dioxide; PEEP, positive end-expiratory pressure; PIP, peak inspiratory pressure; PaO$_2$, partial pressure of oxygen; Raw, airway resistance; TV, tidal volume.

Green rows: relevant mechanical ventilation parameters, lung mechanical characteristics, and arterial blood gas values. Yellow column: day zero, administration of dose of benralizumab. Amber column: day 4 after benralizumab injection when we observed improvement in mechanical ventilation measurements.
maybe due to nonadherence to regular medication and overuse of albuterol [2]. We cannot assert that the benralizumab administered was responsible for the favorable clinical outcome and that the patient would have made a full recovery with only short-acting β2 agonists and systemic corticosteroids. Indeed, the duration of mechanical ventilation (13 days) did not differ from values reported elsewhere [3]. Nevertheless, it should be taken into account that the patient had not responded to a previous aggressive therapeutic approach.

The biology of life-threatening asthma attacks remains unclear, although eosinophils present a widespread distribution within the respiratory tract in fatal cases whereas neutrophils can participate in specific situations, such as sudden-onset fatal asthma, mainly affecting the small airways [4]. In the present case, the patient had a T2-high asthma phenotype (allergic, early-onset, eosinophilic asthma), but he did not respond to high doses of corticosteroids. This might be explained by a shift in the underlying inflammatory process, which seemed to be neutrophil-dominant, and/or by the presence of eosinophilic inflammation with relative insensitivity to corticosteroids, a condition that has been found in about 25% of poorly controlled asthmatics after 7-12 days taking oral prednisolone 30 mg/d [5].

We chose benralizumab because it has enabled the prednisolone dose to be reduced in chronic uncontrolled asthma [6] and because we hypothesized that an ongoing eosinophilic inflammation could have been present in the airways despite complete suppression of blood eosinophils after systemic corticosteroid therapy. On the other hand, Laviolette et al [7] observed that peripheral blood eosinophil counts were undetectable at 1 day after administration of subcutaneous benralizumab and remained depleted throughout the 84 days of the study. While these authors administered doses (100 and 200 mg) above those that are used in clinical practice (30 mg) and the significant decrease in the percentage of sputum eosinophils (from 4.6% to 0.6%) was reported at day 28, the biological effects seem to occur early on with this drug. In fact, a patient with a severe asthma attack in whom systemic corticosteroids were contraindicated achieved significant clinical and functional improvement within 19 hours after subcutaneous injection of benralizumab 30 mg [8]. Besides, Tello et al [9] reported the case of a patient who experienced a life-threatening exacerbation and improved considerably 2 days after a single dose of subcutaneous mepolizumab. Monoclonal antibodies (mAbs) are high-molecular-weight compounds, and for those administered subcutaneously, absorption into the systemic circulation first requires transport of the drug through the interstitial space into the lymphatic system. Thus, absorption of mAbs after subcutaneous administration is a slow process, with an average time to peak concentration (Tmax) of 6-8 days [10], which fits nicely with the time period the patient in the present case started to show an improvement in his medical condition (4 days) and makes it difficult to understand the rapid response to benralizumab described by Ramakrishnan et al [9].

Taken together, both our case and the others discussed here underline the need for a more comprehensive knowledge of the pharmacokinetics of mAbs in the setting of severe asthma. However, they do open a window of opportunity for the treatment of life-threatening eosinophilic asthma attacks.

Funding

The authors declare that no funding was received for the present study.

Conflicts of Interest

Dr Pérez de Llano reports grants, personal fees and nonfinancial support from AstraZeneca, personal fees and nonfinancial support from GSK, and personal fees and nonfinancial support from TEVA, personal fees and nonfinancial support from Novartis, personal fees and nonfinancial support from Chiesi, personal fees and nonfinancial support from Boehringer, personal fees from Sanofi, personal fees from Menarini, personal fees and nonfinancial support from Mundipharma, grants and personal fees from Esteve, personal fees from ROVI, personal fees from BIAL, personal fees from MSD, personal fees from TECHDOW PHARMA, and nonfinancial support from FAES outside the submitted work.

Dr Dacal Rivas reports personal fees and nonfinancial support from Esteve, personal fees and nonfinancial support from Boehringer-Ingelheim, nonfinancial support from GSK, nonfinancial support from Novartis, nonfinancial support from TEVA, nonfinancial support from Chiesi, and nonfinancial support from Ferrer outside the submitted work.

The remaining authors declare that they have no conflict of interests.

References

Validation of App and Phone Versions of the Control of Allergic Rhinitis and Asthma Test (CARAT)

1Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, Porto, Portugal
2Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Porto, Portugal
3Allergy Unit, Instituto and Hospital CUF, Porto, Portugal
4Dept. of Cardiovascular and Respiratory Sciences, Porto Health School, Polytechnic Institute of Porto, Porto, Portugal
5Serviço de Imunoalergologia, Centro Hospitalar Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
6Servicio de Alergia, Complejo Hospitalario Universitario de Santiago, Santiago De Compostela, Spain
7Serviço de Pneumologia, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
8Serviço de Imunoalergologia, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
9Imunoalergologia, Centro Hospitalar de Leiria, Leiria, Portugal
10Serviço de Pneumologia, Hospital Santa Marta, Centro Hospitalar Universitário de Lisboa Central, Lisboa, Portugal
11Serviço de Imunoalergologia, Hospital Amato Lusitano, Unidade Local de Saúde de Castelo Branco, Castelo Branco, Portugal
12Serviço de Imunoalergologia, Hospital de Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, Lisboa, Portugal
13Serviço de Pediatria, Centro Materno Infantil do Norte, Centro Hospitalar Universitário do Porto, Porto, Portugal
14Serviço de Pneumologia, Hospital Nossa Senhora do Rosário, Centro Hospitalar Barreiro Montijo, Barreiro, Portugal
15Serviço de Imunoalergologia, Centro Hospitalar Universitário do Algarve, Portimão, Portugal
16Serviço de Pneumologia, Hospital Garcia de Orta, Almada, Portugal
17Serviço de Pediatria, Hospital Pedro Hispano, Unidade Local de Saúde de Matosinhos, Matosinhos, Portugal
18Serviço de Imunoalergologia, Hospital do Divino Espirito Santo, Ponta Delgada, Portugal
19Serviço de Pediatria, Hospital da Senhora da Oliveira, Guimarães, Portugal
20Serviço de Imunoalergologia, Hospital São Pedro de Vila Real, Centro Hospitalar De Trás-Os-Montes E Alto Douro, Vila Real, Portugal
21Serviço de Imunoalergologia, Hospital Infante D. Pedro, Centro Hospitalar Baixo Vouga, Aveiro, Portugal
22Serviço de Imunoalergologia, Centro Hospitalar Universitário do Porto, Porto, Portugal
23Serviço de Pneumologia, Hospital Garcia de Orta, Almada, Portugal
24Serviço de Pediatria, Hospital Pedro Hispano, Unidade Local de Saúde de Matosinhos, Matosinhos, Portugal
25Serviço de Imunoalergologia, Hospital do Divino Espirito Santo, Ponta Delgada, Portugal
26Serviço de Pediatria, Hospital da Senhora da Oliveira, Guimarães, Portugal
27Serviço de Imunoalergologia, Hospital São Pedro de Vila Real, Centro Hospitalar De Trás-Os-Montes E Alto Douro, Vila Real, Portugal
28Serviço de Pneumologia, Hospital Garcia de Orta, Almada, Portugal
29Serviço de Imunoalergologia, Centro Hospitalar Universitário do Algarve, Portimão, Portugal
30Serviço de Pneumologia, Hospital Garcia de Orta, Almada, Portugal
31Serviço de Imunoalergologia, Centro Hospitalar Universitário do Porto, Porto, Portugal

Manuscript received May 21, 2020; accepted for publication August 31, 2020.

Nagore Blanco Cid
Pneumology Service
Hospital Universitario Lucus Augusti
Lugo, Spain
E-mail: naggoreich_soleil@hotmail.com