JAK Inhibition as a Therapeutic Strategy for IgG4-RD

Khan S1, Gordins P1, Durairaj S2
1Department of Immunology & Allergy, Castle Hill Hospital, Cottingham, UK
2Department of Haemato-Oncology, Castle Hill Hospital, Cottingham, UK

doi: 10.18176/jiaci.0654

Key words: IgG4-related disease. IgG4-RD. Fibrosis. Cytokines. JAK inhibition.

To the Editor:

The review by Carballo et al [1] provides an excellent summary of the varied clinical presentations of IgG4-related disease (IgG4-RD), highlighting the role of clinicians and insisting on a detailed pathological description of affected organs with IgG4-stained plasmablasts infiltrating tissues to arrive at a diagnosis. However, the cytokine environment and what makes this “nonpathogenic” IgG isotype cause irreversible end-organ damage remains unknown. As the authors rightly discuss, both autoimmune and allergic aspects of IgG4-RD are involved. In addition to the general approach to managing the diverse clinical presentations of this disease, we would like to discuss the cytokine signalling involved in IgG4-RD in more detail and suggest Janus-associated kinase (JAK) inhibition as alternative therapeutic strategy to manage this condition.

Autoimmunity implies a perpetual cycle that is initiated by a cell-damaging event that modifies self-antigens. Tissue-resident antigen-presenting cells increase MHC class II expression and present modified antigens to T cells, and the unique cytokine environment switches CD4+ T cell differentiation, which in turn drives an adaptive immune response towards IgG4 plasma cell differentiation and, eventually, end-organ damage with fibrosis (Figure).

The pathogenic role of IgG4 was shown to involve passive transfer of antibodies from patients with IgG4-RD causing pancreatic and salivary gland injury in neonatal Balb/c mice [2]. Distinct glycosylation changes on IgG4 with increased G0 and F1 glycans in patients with IgG4-RD and hypocomplementemia suggest activation of the lectin pathway on phagocytes to induce chronic inflammation [3,4]. Interestingly, in the pancreatic ovalbumin mouse model (RIP-mOVA mice), no tissue inflammation was observed when animals were exposed to recombinant ovalbumin-specific human IgG4 monoclonal antibody only in contrast to cotransfer of OVA-specific CD8+ cytotoxic T cells, which resulted in significant tissue damage, thus suggesting the crucial role of T cells in the pathogenesis of IgG4-RD [5]. It is uncertain whether IgG1 antibodies confer pathogenicity along with IgG4, especially with identification of annexin A11–specific IgG1 and IgG4 antibodies in patients with IgG4-RD affecting the biliary tract, salivary gland, or pancreas [6].

As the pathologic process in IgG4-RD can involve almost any tissue in the body, it is likely that the sustained cellular response is due to a ubiquitous cytokine signal(s). In this context, it is worthwhile noting that all cells in the body have the ability to respond to IL-4 and IL-13 cytokines, including astrocytes and microglial cells, which are macrophage-like cells in the central nervous system, thus perhaps providing an explanation for leptomeningeal IgG4-RD. Tsuboi et al [7] showed that patients with Sjögren syndrome differ from those with IgG4-RD sialadenitis, in which IL-10 and TGF-β were...
significantly elevated. The pleiotropic effects of IL-4 and IL-13 produced by CD4+ in variant natural killer (iNKT) cells and/or group 2 innate lymphoid cells (ILC2) in IgG4-RD, as well as signalling through type 1 (for lymphocytes) and type 2 (for epithelial cells) IL-4 receptors via JAK1/JAK3 (IL-4) or Tyk2/JAK3 (IL-13) with downstream STAT6, are likely to drive chronic tissue inflammation and fibrosis [8] (Figure).

This cytokine model of self-sustained signalling implies that JAK inhibitors (small molecules that inhibit JAK1, JAK2, JAK3, and Tyk2) may be useful in controlling tissue inflammation and preventing fibrosis in patients with IgG4-RD and may prove to be as promising as the findings from recent clinical trials in several other autoimmune diseases [8,9]. When co-cultured with tofacitinib (first-generation JAK1/3 inhibitor with some anti-JAK2 activity), synovial fibroblasts lost their ability to migrate to form networks and down-regulate production of inflammatory cytokines and metalloproteinases. Tofacitinib prevented bleomycin-induced skin and lung fibrosis in mice, including reduction of skin fibrosis in tight skin 1 (TSK1+/+) mice, which is a model for the human fibrotic skin disorder sclerodema. It was also able to reverse graft-versus-host disease and provide endothelial cell protection, thus indicating its multiple effects on lowering tissue inflammation. Tofacitinib 5 mg twice daily was also effective in moderate-to-severe rheumatoid arthritis and psoriatic arthritis, with an overall satisfactory safety profile and only a small increase in the frequency of malignancies and serious infections. Baricitinib (JAK1/2 inhibitor), which inhibits expression of costimulating molecules CD80/CD86 on monocyte-derived dendritic cells and production of type 1 interferons by plasmacytoid dendritic cells, including production of IL-6 and differentiation of B cells into plasmablasts, may be an ideal candidate for managing IgG4-RD. It was effective in anti-TNF inhibitor–refractory rheumatoid arthritis, although it increased the risk of thromboembolic events. Ruxolitinib (JAK2/1 inhibitor) decreased M2 macrophage activation by inhibiting IL-4 and IL-13 signalling and improved skin and pulmonary inflammation in a mouse model that mimics scleroderma-associated interstitial lung disease [10]. JAK inhibitors may therefore have a significant role to play in IgG4-RD. However, physicians prescribing these drugs will need to be mindful of the risks of novel infections, as well as the possible re-emergence of old infections.

Funding

The authors declare that no funding was received for the present study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

Manuscript received November 17, 2020; accepted for publication November 20, 2020.

Sujoy Khan

Department of Immunology & Allergy
Castle Hill Hospital
Cottingham, HU16 5JQ, UK
E-mail: sujoykhan@gmail.com