Anaphylaxis After Cutaneous Application of Argan Oil

de las Marinas Alvarez MD1, Martorell Calatayud C1, Castillo Fernandez M2, Alvariño Martin M1, Félix Toledo R1, Pineda de la Losa F1, Cerdá Mir JC1, Martorell Aragonés A1
1Allergology Service, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
2Applications Laboratory, DIATER Laboratorios, Madrid, Spain
doi: 10.18176/jiaci.0596

Key words: Argan. Cutaneous contact. Anaphylaxis. Immunoblotting. Food allergy.

Argan oil is an edible oil that is obtained by pressing mature seeds from the berry of the argan tree (Argania spinosa), which is endemic to Morocco. It is used in food, cosmetics, and hair care [1] and, since 1980, has become an increasingly popular ingredient in the international cosmetics industry. Consequently, argan oil is increasingly used in Spain.

Only 1 case of anaphylaxis to argan oil [2] and 2 cases of allergic contact dermatitis have been described to date [3,4]. Cutaneous sensitization to foods can induce food allergy through skin care treatments containing food products in adults [5].

Below, we describe the first case of anaphylaxis triggered by the topical application of a product containing argan oil.

The patient was a 29-year-old woman diagnosed in childhood with allergic rhinoconjunctivitis to domestic mites and grass pollen that had progressed since adolescence to allergic rhinoconjunctivitis to peanuts, peach, and other rosaceae (apricot, plum, cherry), as well as to nuts (hazelnut, walnut, chestnut) and mustard. She also experienced symptoms of generalized urticaria and oral allergy syndrome with various vegetables (courgette and aubergine). She did not report a history of atopic dermatitis.

The patient requested a consultation after experiencing 2 anaphylactic episodes during the previous 4 years immediately after cutaneous contact with argan oil, which she had previously used in well-tolerated cosmetic preparations. The first episode involved a cosmetic hair care product applied to the scalp (leading to widespread cutaneous pruritus, angioedema, and hypotension), and the second (same manifestations, quicker onset) after application of a body oil to the arm. On both occasions, she required emergency treatment with epinephrine to control the symptoms. She did not report food intake or presence of cofactors with either event. Since then, she has been prescribed self-injectable epinephrine. The patient denied ever having ingested argan oil as a food seasoning.

Skin prick tests (SPTs) performed with a standard battery of aeroallergens and several foods yielded positive results to pollen (grass, Salsola species, and mugwort), dust mites, peanut, lipid transfer protein (LTP, peach peel), mustard, tarragon, and cumin. Skin tests for other foods such as nuts (almonds, hazelnuts, sunflower seeds, cashew, pistachio, walnut, pine nut), spices (cardamom, clove, coriander), and sesame seeds were negative. All tests were performed following EAACI guidelines [6]. A positive test result was defined as a wheal of at least 3 mm.

Determination of serum specific IgE (sIgE) (ImmunoCAP, Thermo Fisher Scientific) revealed the following values: mustard, 0.12 kUA/L; peanut, 0.34 kUA/L; peach, 0.75 kUA/L; walnut, 0.54 kUA/L; and Pru p 3, 0.99 kUA/L.

sIgE to a panel of 112 allergens was also evaluated using ImmunoCAP ISAC microarray (Thermo Fisher Scientific). The results were expressed as ISAC standardized units (ISU), with a cut-off of 0.3 ISU. ISAC revealed sensitization to species-specific components of grass pollen (rPhl p 1, 9.9 ISU; rPhl p 5, 3.0 ISU), Salsola pollen (nSal k 1, 2.4 ISU), and dust mites (nDer p 1, 1.1 ISU; nDer f 1, 1.3 ISU), as well as marker components of cross-reactivity (nLTP) in walnut (nJug r 3:0.7 ISU), peach (rPru p 3, 0.6 ISU), and mugwort (nArt v 3:0.7 ISU). Findings were negative for all other native and recombinant allergens in the panel.

For the study of the specific allergy to argan, berries were collected directly from the tree in Morocco to prepare the extract. Skin tests with argan berry extract (7.39 mg/mL) were positive (10 × 12 mm) at a dilution of 1/10. A provocation test was not considered, owing to the severity of the symptoms resulting from cutaneous contact with the products.

A prick test conducted with 2 healthy controls and 5 atopic controls sensitized to peach LTPs was negative at a concentration of 1:1.

Western blot analysis (Figure, A) of the Argan extract (water-soluble fraction) revealed that several protein bands at 10, 14, 18, 20, 32-34, and 48 kDa (Figure, B) fixed the patient’s IgE, with immunodetection being negative for the external-internal coverings of the extracts and very slight for the fat-soluble fraction [7]. The presence of bands of IgE binding to proteins of other plant-based foods (walnut, peach, peanut, sesame, and mustard) was investigated and proved negative for peanut, walnut, and sesame seed, with several bands being revealed for mustard (10, 14, 15, 21, 27, 30, and 34 kDa) and 1 of 13-15 kDa for peach (Figure, B).
Immunoblotting inhibition (Figure, C) performed for argan berries, with preincubation with both peach and mustard, resulted in inhibition of binding in several previously described bands (10, 14, 32-34, and 48 kDa) and the persistence of bands at 18 and 20 kDa, which do not correspond to the predicted molecular weight for peach LTP (Pru p 3, 8-10 kDa) or mustard LTP (Sin a 3, 12 kDa).

Dot blot [8] with argan oil was positive (Figure, D).

We present the first case of allergy to argan berries manifesting as anaphylaxis after cutaneous contact with argan oil in a woman sensitized primarily to peach LTP (Pru p 3). Cutaneous contact has been reported to be a possible inducer of IgE hypersensitivity with various food allergens (peanut, wheat, fish, jellyfish, milk, and rice) on skin affected by atopic dermatitis, irritative skin, and healthy skin [9], thus demonstrating the possibility of subsequent anaphylaxis after ingestion. Hypersensitivity has also been induced after further cutaneous contact subsequent to sensitization [10].

In the case we report, immunoblotting revealed serum specific IgE against proteins of 18 kDa and 20 kDa in argan berries. This IgE persists after preincubation with peach or mustard extract and may be responsible for the anaphylactic symptoms, regardless of primary sensitization to LTP. The existence of a positive dot blot result with argan oil demonstrates that proteins in the berries that have caused sensitization in the patient remain in the oil.

The patient also seemed to have specific IgE to mustard, in contrast with other, non–LTP-dependent proteins present in the extract.

The only case of anaphylaxis owing to the intake of argan oil reported to date [2] was that of a Moroccan male, in whom a 10-kDa protein band was described. This may correspond to the band of a similar molecular weight found in the present case. Two cases of allergic contact dermatitis have also been reported [3,4], although there have been no further cases of anaphylaxis owing to the cutaneous application of a product containing argan oil.

Given the increasingly widespread use of argan in food and cosmetics, more cases of allergy to this product are likely to be encountered in the future.

Funding
The authors declare that no funding was received for the present study.

Conflicts of Interest
The authors declare that they have no conflicts of interest.

References
Anaphylaxis Induced by Beer

Navarro L1, Lazo L1, Pineda P2, Labrador-Horrillo M3, Roger A1, Basagaña M1

1. Allergy Section, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
2. Application Lab, Diater, Madrid, Spain
3. Allergy Section, Department of Internal Medicine, Hospital Universitari de la Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain

doi: 10.18176/jiaci.0643


The prevalence of cereal allergy is highly influenced by geographical area and consumption habits. According to data from Alergologica 2015 [1], cereal allergy accounts for 2.1% of all cases of food allergy in Spain.

Beer is a barley-based alcoholic beverage that also contains hops, yeast, and other cereals (wheat, oats, corn, and even rye). Barley is also the basis of malt vinegar, whiskey, and gin. Several allergens of barley have been described, including lipid transfer protein (LTP), α- and β-amylase, gliadin, glutenin, peroxiredoxin, thionin, and trypsin inhibitor [2].

We present a case of beer-induced anaphylaxis. A 48-year-old man with no personal history of allergy experienced sudden loss of consciousness after drinking beer.

Five to six years previously, he had experienced pharyngeal pruritus and mild dyspnea with no other systemic symptoms after drinking beer, which he subsequently avoided for several years. After trying it again, he immediately lost consciousness and experienced a mandibular fracture. The physical examination at the time of the consultation was normal. All ingredients except barley were tolerated afterwards.

Skin prick testing (SPT) with a standard panel of aeroallergen extracts was positive only to mugwort. The results of SPT with food extracts were negative. SPT with commercial cereal extracts (corn, wheat, rice, oat, barley, rye, gluten, and gliadin [LETI]) was negative, with a mild response to barley (histamine, <2 × 2 mm). Prick by prick testing with beer (San Miguel) was positive (5 × 7 mm). Total IgE and basal tryptase values (ImmunoCAP, Thermo Fisher Scientific) were 160 kU/L and 3.84 µg/L respectively, and specific IgE antibodies were as follows: wheat (Triticum aestivum), 0.03 kU A/L; barley (Avena sativa), <0.1 kUA/L; hop (Humulus lupus), <0.1 kUA/L; rPru p 3, <0.1 kUA/L; and ω-5 gliadin, 0 kUA/L. ImmunoCAP ISAC microarray (Thermo Fisher Scientific) revealed a positive result only for nArt v 1 (0.6 ISU).

Protein extract from hop, rice, barley, rye, corn, wheat, and beer yeast were homogenized in phosphate-buffered saline.


II Manuscript received May 17, 2020; accepted for publication September 7, 2020.

Maria Dolores de las Marinas Alvarez
Consorcio Hospital General Universitario de Valencia
Allergology Service
Av Tres Cruces nº 2
46014 Valencia (Spain).
E-mail: ddelasma@yahoo.es