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Effect of H1 antihistamines
upon the central nervous system

The antihistamines have been divided into fi rst 
and second generation drugs, according to their 
pharmacokinetic properties, structural characteristics 
and adverse effects. The effects exerted by these 
substances upon the central nervous system (CNS) are 
fundamentally determined by their capacity to cross 
the blood-brain barrier (BBB) and bind to the central 
H

1
 receptors (RH1). The capacity to cross the BBB is 

dependent upon the lipophilicity of the drug molecule 
and on its affi nity for P glycoprotein (GpP) – the active 
transporter of the BBB – which “actively extracts 
xenobiotic substances from the CNS”. GpP is located 
on the luminal surface of the endothelial cells of the 
brain blood vessels [1]. The cerebral capillaries present 
tightly sealing intercellular junctions with a relative lack 
of transendothelial conduits for the passive diffusion of 
soluble molecules.

The fi rst generation antihistamines are liposoluble, 
with scant affi nity for GpP – unlike the second generation 
molecules which are lipophobic and are regarded as 
GpP substrates. The distinction based on differences in 
molecular weight (the smaller the molecule, the easier 
it is to cross the BBB, at least in theory) is becoming 
increasingly less important. As an example, desloratadine 
has a molecular weight (mw = 338.9) similar to that of 
hydrazine (347.9), but permanence of the two drugs in 
brain tissue differs after administration. 

The criterion used to classify an antihistamine as 
possessing sedative action is based on three requirements 
that must be met to a minimally acceptable degree:

a) Subjective impact upon sleepiness (presence of 
drowsiness).

b) Objective evaluations of possible alterations in 
cognitive and psychomotor function.

c) Central H
1
 receptor occupation studies based on 

positron emission tomography (PET).
Although the last two of these criteria are particularly 

important, all three must be present to classify the drug as 
possessing sedative action [2]. Chen et al [3] have studied 

the different concentrations reached by fi rst and second 
generation antihistamines in plasma and in brain tissue 
of normal mice and mice with mdr 1a /1b (multidrug 
resistance gene encoding for GpP) defi ciency. Expressed 
graphically, the results showed the area under the curve 
(AUC), refl ecting drug penetration of brain tissue, to 
be much greater (about 5.5-fold) in the case of the fi rst 
generation histamines versus the second generation 
molecules.

The histaminergic system

In the CNS, the only neurons to synthesize histamine 
are found in the mammillary tubercles of the posterior 
hypothalamus (the only location where histidine 
decarboxylase activity has been detected), from 
which projection occurs towards the rest of the brain. 
Histamine has become just another neurotransmitter. The 
morphological characteristics of the histaminergic system 
are similar to those of other biogenic amine systems 
(norepinephrine, serotonin), i.e., it possesses a compact 
neuronal nucleus from which many fi bers emerge in all 
directions. 

Histamine interacts within the CNS with specifi c H1-
H2-H3 receptors to induce different activities. Histamine 
in the brain is implicated in many functions, such as the 
waking-sleep cycle, attention, memory and learning, 
excitation, and the regulation of appetite. It acts as a 
regulatory center for global brain activity.

The histaminergic system interacts with other systems 
and with other neuropeptides to exert the following 
actions [4]:

a) Modulation of acetylcholine (ACh) release, acting 
upon the magnocellular basal nucleus, which supplies 
the cortex with most of its cholinergic innervation. Local 
histamine application reduces cholinergic tone via the 
H3 receptors, causing learning diffi culties and cognitive 
impairment.
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b) Modulation of emotional memory acquisition, 
acting upon the basolateral amygdala.

c) Modulation of alertness; the histaminergic neurons 
are activated at low level during sleep, and at high 
level during attention and the waking state. Interaction 
with orexin-secreting neurons (this being a peptidergic 
neurotransmitter affecting alertness – its defi ciency 
causing narcolepsy). Interaction, in turn, with the 
principal noradrenergic nucleus of the brain (the locus 
coeruleus). Histamine administration in this nucleus 
increases neuronal excitation in the latter [5]. 

Lastly, the histaminergic system interacts with and 
excites the serotoninergic neurons of the nucleus raphe 
dorsalis [6]. A reduction in serotonin is known to produce 
depression.

d) Regulation of food intake: histamine is one of the 
appetite-suppressing neurotransmitters. Noradrenaline, 
present in the paraventricular nucleus of the hypothalamus, 
stimulates food ingestion. Histamine has been shown to 

Figure 3. Study conducted with placebo and dexchlorpheniramine (1 and 2 mg). A) Absence of any signifi cant increase 
in the subjective sleep scale (SSS) with dexchlorpheniramine 2 mg; B) Signifi cant increase in the objective time-response 
measures (2 mg); C) Reduced accuracy of response (2 mg). Reproduced with permission from [12].

Figure 1. Interactions of the histaminergic system with 
other neurotransmitter systems of the brain.

Figure 2. Distribution map of the H
1
 histaminergic 

receptors in the CNS, established by PET-Dox C-11. 
Reproduced with permission from [10].

inhibit noradrenaline release from the nerve endings of the 
paraventricular nucleus, thereby suppressing appetite [7].

e) Control of oxytocin secretion under different 
physiological conditions, including delivery and lactation. 
Histamine acts upon the paraventricular nucleus of the 
hypothalamus, increasing intranuclear and systemic 
oxytocin release [8].

To summarize, it can be affi rmed that the interactions 
of the histaminergic system are very numerous and 
complex, and that the system exerts its different effects 
by activating different receptor subtypes in different 
brain regions (Figure 1).

The varied and multiple activities of the histaminergic 
system are accompanied by a wide distribution of the H

1
 

receptors throughout the central nervous system.
Studies made with radioactively labeled doxepin 

(Dox C-11), which acts as a ligand to locate the RH
1
 and 

quantify their occupation, reveal an extensive fi xation 
map within the brain, as evidenced by PET (Figure 2).
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RH1 occupation studies 

Most studies of the central effects of antihistamines, 
when administered at therapeutic doses, are of a 
comparative nature between second and fi rst generation 
molecules, and refer to the alterations caused by the 
latter group of drugs in reaction capacity, attention, 
learning capacity or sedation.

As our knowledge of the central effects of 
antihistamines has increased, objective measurements 
of such effects gradually have been introduced, since 
subjective measurements (drowsiness, tiredness) do not 
correlate adequately to the objective results of functional 
tests (quantifi cation of reaction time, or of accuracy of 
response) (Figure 3).

Almost all studies have been based on PET following 
the administration of Dox C-11 via the intravenous route, 
and adopting a previously accepted methodology. 

PET has become the technique of choice for studying 
antihistamine penetration of brain tissue. This technique 
allows the correlation of central H

1
 receptor occupation 

to psychometric and functional studies.
To determine the amount of H

1
 receptors occupied 

by each drug, the study antihistamine is administered, 
followed by intravenous Dox C-11 injection once the 
peak plasma drug concentration has been reached. The 
RH

1
 are expressed as the zones of Cox C-11 “binding 

potential” (BP), i.e., Dox C-11 binds to the receptors 
that remain free after the study antihistamine has been 
administered. If the antihistamine in question shows 
little or no binding to the RH

1
, then the BP sites will 

be very numerous. Such an antihistamine can thus be 
taken to represent a drug with little or no central effects 
(second generation molecule). If binding to the receptors 
is extensive, then practically no sites will remain for 
Dox-11 binding, as in the case of the fi rst generation 
antihistamines.

Tagawa et al [9] (Figure 4), in a placebo controlled 

Figure 4. PET Dox C-11 measurement 
of central RH

1
 occupation by fi rst 

(dexchlorpheniramine) and second 
generation antihistamines (ebastine). 
The BP (receptor binding potential 
for Dox-C11) is greater with ebastine 
(fewer occupied H

1
 receptors, 

with increased Dox C-11 binding; 
increased radioactivity) than with 
dexchlorpheniramine (more occupied 
H

1
 receptors, with decreased Dox 

C-11 binding; lesser radioactivity). 
Reproduced with permission from [9].
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study involving ebastine 10 mg and chlorpheniramine 
2 mg, showed most of the radioactivity to be located 
frontal, temporal and occipital cortical regions of the 
brain, the cingulate gyrus, the striate nucleus and the 
thalamus. Nevertheless, despite the fact that these 
regions are very rich in RH

1
, another study indicates 

that Dox C-11 binds nonspecifi cally within the striate 
nucleus and thalamus, in a proportion that exceeds the 
extent to be expected on the basis of the number of H

1
 

receptors present in these areas. Postmortem studies 
have shown that the density of these receptors in the 
subcortical zones is slightly lower than in the cortical 
regions; consequently, the high Dox C-11 distribution 
values in these locations would not precisely refl ect the 
actual RH

1
 density [10].

Cerebellar uptake is generally low, since few RH
1
 

are found at this level. The cerebellum is usually taken 
to be an area of nonspecifi c Dox C-11 fi xation - the 
result at cerebellar level being subtracted from the 
fi ndings of other regions in order to obtain more precise 
quantifi cation in the latter.

Comparison by graphic analysis of these images 
after administering the antihistamines revealed the 
areas where chlorpheniramine fi xation is greater, i.e., 
the zones where the latter occupied more H

1
 receptors 

than ebastine. These zones were fundamentally the 
prefrontal and frontal cortex, the cingulate gyrus and 
the thalamus.

The occupation of brain RH
1
 was correlated to the 

plasma levels of chlorpheniramine, and in turn to a 
worsening of cognitive function. However, this was not 
observed in the case of ebastine (specifi cally its active 
metabolite, carebastine). In effect, ebastine occupation 
was approximately 10%, while chlorpheniramine 2 mg 
exceeded 50%. The RH

1
 occupation percentages for the 

rest of the second generation antihistamines range from 
10-30% (cetirizine), though fexofenadine has been 
reported to occupy no RH

1
 [11]. 
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817 children treated with cetirizine for 18 months, have 
observed no adverse effects of interest in relation to 
cognitive or psychomotor function [16-18].

Only Ng et al have demonstrated an increase in latency, 
using the P300 ERP (a test evaluating time to response 
after an auditory stimulus), after the administration of 
a single dose of cetirizine 10 mg, though the children 
showed no subjective drowsiness [19].

Interaction with alcohol

The fi rst generation antihistamines reinforce the 
effects of ethanol upon oculomotor coordination, 
cognitive function and driving. 

In most cases no such effects have been observed with 
the second generation antihistamines [20,21], though no 
categorical affi rmations can be made in this sense. In the 
case of combining alcohol with antihistamines, Weiler 
et al have found fi rst generation drugs to manifest more 
central effects than the second generation antihistamines 
– though the latter also impair activities. It has even 
been affi rmed that the fi rst generation drugs induce more 
deleterious effects upon vehicle driving than alcohol, at 
the doses studied [2].

Conclusions

In general terms, and after establishing different visual 
and oculomotor tests requiring attention, signal detection 
and identifi cation (acoustic, visual), and decision taking 
to assess alterations in brain function, the second 
generation antihistamines administered as a single dose 
or in the course of 4-5 days did not differ signifi cantly 
from placebo as regards the results obtained [23-28]. In 
contrast, the fi rst generation molecules showed alterations 
in the tests performed.

Nevertheless, tolerance is known to develop, with a 
marked decrease in central effects of the fi rst generation 
antihistamines when the latter are administered for 4-5 
consecutive days [29,30]. 

Nevertheless, it must be taken into account that the 
great majority of the studies to date have been made 
in healthy volunteers. This makes it diffi cult to fully 
extrapolate the results to the rest of the population, 
since allergic patients are infl uenced by infl ammatory 
mediators present in the physiopathology of the allergic 
infl ammation process - and this may induce variations 
in capillary permeability, not only at peripheral level but 
also at the blood-brain barrier. These variations in turn 
may lead to differences in the central adverse effects of 
such drugs in these patients.
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