SUPPLEMENTARY MATERIAL

Appendix 1: Data S1

Peptides resulting from in-solution digestion were loaded first onto an Acclaim PepMap

100 Trapping column (Thermo Scientific, 20mm x 75 µm ID, 3 µm C18 resin with 100 Å

pore size) using buffer A (2% acetonitrile, 0.1% formic acid) and then were separated

and eluted on a C18 resin NTCC analytical column (NikkyoTechnos Co., Ltd.,

150mmx75µm ID, 3 µm C18 resin with 100 Å pore size) using a 150 minute gradient of

5% to 35% Buffer B (100% acetonitrile, 0.1% formic acid) in Buffer A at constant flow

rate of 250 nl/min.

Data acquisition was performed with a Q-Exactive HF. Data were acquired using an ion

spray voltage 1.8 Kv and ion transfer temperature of 250°C. All data were acquired

using data-dependent acquisition (DDA) and in positive mode with Xcalibur 4.0

software. For the MS2 scan, top 17 most abundant precursors with charges of 2-6 in

MS1 scans were selected for higher-energy collisional dissociation (HCD)

fragmentation with a dynamic exclusion of 20 s. The MS1 scans were acquired at a

m/z range of 350-2000Da with a mass resolution of 60,000 and an automatic gain

control (AGC) target of 3E6 at a maximum Ion Time (ITmax) of 60 ms. The threshold to

trigger MS2 scans was 2E3; the normalized collision energy (NCE) was 27%; the

resolved fragments were scanned at a mass resolution of 30,000 and an AGC target

value of 1E5 with anITmax of 80ms.

Appendix 2: Table S1. Identification by LC-MS of the raw venom of A. mellifera

IUIS	Accession number	Description	Score Mascot	Coverage [%]	PSM/MW	% Total PSM/MW	Grouping % Total PSM/MW
Api m 1	NP_001011614.1	Phospholipase A2 precursor	5294	70	28.579	26.26	30.00
	XP_001120293.1	Phospholipase A2-like	384	48	2.634	2.42	
	XP_012142828.1	Phospholipase A2-like	468	5	1.371	1.26	
	XP_006616412.1	Phospholipase A2-like	0	8	0.065	0.06	
Api m 2	XP_016771467.1	Hyaluronidase isoform X1	538	29	1.496	1.37	1.37
Api m 3	XP_006569959.1	Venom acid phosphatase Acph-1-like	39	7	0.047	0.04	0.17
	XP_017792604.1	Venom acid phosphatase Acph-1-like isoform X1	42	3	0.134	0.12	
Api m 4	XP_016916903.1	Melittin, partial	1705	15	35.364	32.49	35.34
	AMP81999.1	Prepromelittin, partial	60	81	3.103	2.85	
Api m 5	XP_006614167.1	Venom dipeptidyl peptidase 4-like, partial	353	12	0.664	0.61	1.47
	NP_001119715.1	Venom dipeptidyl peptidase 4 precursor	363	41	0.933	0.86	
Api m 6	P83563.1	Allergen Api m 6	372	62	4.211	3.87	3.87
Api m 7	NP_001011584.1	Venom serine protease 34 precursor	362	50	2.374	2.18	2.41
	XP_392669.1	Venom serine protease 34	49	21	0.247	0.23	
Api m 8	NP_001119716.1	venom carboxylesterase-6 precursor	110	25	0.252	0.23	0.23
Api m 9	XP_016771167.1	Venom serine carboxypeptidase isoform X1	153	37	0.372	0.34	0.63
	NP_001152775.1	Venom serine carboxypeptidase precursor	143	27	0.317	0.29	
Api m 10	NP_001012431.1	Icarapin-like precursor	237	22	1.290	1.19	1.26
	XP_003704678.2	Icarapin-like	0	5	0.078	0.07	
Api m 11	XP_006558987.1	Major royal jelly protein 8 isoform X1	243	38	0.821	0.75	1.50
	ACD84799.1	Major royal jelly protein 8	243	39	0.810	0.74	
Other proteins					23.685	21.76	21:76

IUIS: International Union of Immunological Societies; PSM/MW: peptide-spectrum match normalized by molecular weight of the protein

J Investig Allergol Clin Immunol 2022; Vol. 32(2): 116-123

doi: 10.18176/jiaci.0639