Basophil activation test with progressively less heated forms of egg distinguishes egg allergic from tolerant children

Running title: BAT with progressively less heated egg extracts

De Vlieger L^1 , Nuyttens $L^{1,2}$, Ieven $T^{1,3}$, Diels M^2 , Coorevits L^1 , Cremer J^1 , Schrijvers $R^{1,3}$, Bullens $DMA^{1,2}$

¹Department of Microbiology, Immunology and Transplantation, Allergy and Immunology Research Group, KU Leuven, Leuven, Belgium

²Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium

³Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium

Correspondence:

Dominique Bullens UZ Herestraat 49 – bus 811 3000 Leuven

E-mail: dominique.bullens@kuleuven.be

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.18176/jiaci.0964

Abstract

Background: Diagnosis of egg allergy through basophil activation testing (BAT) has been mainly performed with an egg white extract or individual egg allergens rather than clinically more representative whole-egg extracts. Impact of heating on whole-egg extract allergenicity remains unassessed.

Objective: Validating BAT with gradually less heated whole-egg extracts in egg allergy diagnosis and as tolerance marker.

Methods: CD63-based BAT was performed with five progressively less heated extracts from cake, hard-boiled egg, omelet, soft-boiled, and raw egg in 10 egg allergic (EA), 10 complete egg tolerant (ET) and 12 non-egg-sensitized non-allergic (NEA) children. Cutoffs and diagnostic accuracy measures were established through ROC analysis. Changes in basophil response were assessed in 12 baked egg tolerant children undergoing an 8-month gradual egg reintroduction protocol with BAT and oral food challenges prior to each reintroduction step.

Results: Basophil responses to all egg extracts were increased in EA, but not in ET and NEA children. Responses decreased progressively with more heated egg extracts. Compared to ET children, EA children showed higher basophil sensitivity for all egg extracts. Negative BAT responses predicted clinical tolerance with a 90-100% sensitivity, 100% specificity, and false positive rate of 2.78%. In comparison, egg sIgE's (<0.35 kUA/L) had a lower specificity of 50-78% with a false positive rate of 40%. Basophil reactivity and sensitivity tended to decrease in baked egg tolerant children undergoing gradual egg reintroduction, concurrent with tolerance development.

Conclusion: BAT with progressively less heated egg preparations is a sensitive and highly specific tool to discriminate EA from ET children.

Key words: Basophil. Basophil activation test. Egg allergy. Baked egg tolerance. Heated egg. Pediatric. Egg sIgE.

Resumen

Antecedentes: El diagnóstico de la alergia al huevo mediante test de activación de basófilos (TAB) se ha realizado principalmente con un extracto de clara de huevo o alérgenos de huevo individuales en lugar de con extractos de huevo entero clínicamente más representativos. Aún no se ha evaluado el impacto del calentamiento en la alergenicidad del extracto de huevo entero.

Objetivo: Validar el TAB con extractos de huevo entero gradualmente menos calentados en el diagnóstico de la alergia al huevo y como marcador de tolerancia.

Métodos: Se realizó un TAB basado en la expresión de CD63 con cinco extractos de huevo progresivamente menos calentados (pastel, huevo duro, tortilla, huevo pasado por agua y huevo crudo) en 10 niños alérgicos al huevo (AH), 10 completamente tolerantes al huevo (TH) y 12 no alérgicos ni sensibilizados al huevo (NA). Se establecieron puntos de corte y medidas de precisión diagnóstica mediante análisis ROC. Se evaluaron los cambios en el TAB en 12 niños que toleraban el huevo horneado sometidos a un protocolo de reintroducción gradual del huevo durante 8 meses con TAB y provocaciones orales previos a cada paso de la reintroducción.

Resultados: La respuesta de basófilos a todos los extractos de huevo estaban aumentadas en los niños AH, pero no en los TH y NA. Las respuestas disminuyeron progresivamente con extractos de huevo más calentados. En comparación con los niños TH, los niños AH mostraron una mayor sensibilidad de los basófilos a todos los extractos de huevo. El TAB negativo predijo tolerancia clínica con una sensibilidad del 90-100%, una especificidad del 100% y una tasa de falsos positivos del 2.78%. En comparación, la IgE específica a huevo <0.35 kUA/L tuvo una especificidad inferior del 50-78% con una tasa de falsos positivos del 40%. La reactividad y la sensibilidad de los basófilos tendieron a disminuir en los niños sometidos a la reintroducción gradual de huevo, en paralelo al desarrollo de tolerancia.

Conclusión: El TAB con preparados de huevo progresivamente menos calentados es una herramienta sensible y altamente específica para discriminar a los niños alérgicos a huevo de los tolerantes.

Palabras clave: Basófilo. Test de activación de basófilos. Alergia a huevo. Tolerancia a huevo horneado. Huevo calentado. Pediátrico. IgE específica a huevo.

Summary Box

• What do we know about this topic?

Diagnosis of egg allergy through basophil activation testing (BAT) has been mainly performed

with an egg white extract or individual egg allergens rather than clinically more representative

whole-egg extracts. The impact of heating on whole-egg extract allergenicity remains

unassessed.

How does this study impact our current understanding and/or clinical management of

this topic?

BAT with gradually less heated whole-egg extracts discriminates egg allergic from tolerant

children, with superior specificity compared to egg sIgE < 0.35 kUA/L. Progressive heating

reduces the ability of whole-egg extracts to induce basophil activation in vitro.

Introduction

Diagnosis of childhood egg allergy is currently established by medical history accompanied by

a first-line diagnostic test including measurement of serum specific IgE (sIgE) or skin prick

testing (SPT) [1,2]. The specificity of these first-line tests can be suboptimal as they often reflect

irrelevant sensitization to hen's egg rather than clinical hen's egg allergy [1,2]. In a 2014 meta-

analysis, egg sIgE levels ≥ 0.35 kUA/L predicted egg reactivity with a mean specificity of 49%

and sensitivity of 93% [3]. Increasing cutoff levels offered increased specificity at the cost of

sensitivity [4]. Consequently, an in-hospital oral food challenge (OFC) is the gold standard to

confirm the diagnosis of egg allergy or monitor for allergy resolution [5,6]. However, this

procedure requires an experienced clinical team as well as well-equipped facilities as life-

threatening allergic reactions during OFCs have been described [5,6]. In this regard, basophil

activation testing (BAT) has emerged as an alternative non-invasive ex vivo assay for IgE-

mediated hypersensitivity that can be used to diagnose food allergy and monitor the

development of natural or immunotherapy-induced tolerance [7–9].

The majority of studies that assessed the performance of BAT to diagnose egg allergy or

monitor for resolution used an egg white extract or the individual egg allergens, ovalbumin and

ovomucoid, for basophil stimulation [10–12]. An ovalbumin-based BAT could diagnose egg

allergy with a 100% specificity and 77% sensitivity [10]. In another study, basophil reactivity

following stimulation with egg white extract discriminated two clinical egg allergy phenotypes,

in which baked egg reactive children had a higher percentage of CD63-positive (%CD63⁺)

basophils to egg white compared to baked egg tolerant (BET) children [13]. Several studies

evaluating BAT during egg oral immunotherapy also reported a decreased %CD63⁺ basophils

to pasteurized whole egg, egg white, ovalbumin or ovomucoid at the end of the treatment [14–

19]. However, few if any studies examined BAT with clinically representative whole-egg

extracts and no studies have evaluated BAT as a non-invasive predictor of clinical tolerance

during the gradual reintroduction of egg using an egg ladder [14,18].

In a recent study, we demonstrated the safe induction of tolerance to raw egg in a BET cohort

through progressive introduction of less heated egg products over a 24-month period [20].

Having characterized extracts from these egg products (cake, hard-boiled egg, omelet, soft-

boiled egg and raw egg), we first aimed to investigate the diagnostic performance of BAT with

these extracts in discriminating between true egg allergic and tolerant children with positive

SPT or sIgE to egg or egg components. Secondly, we assessed the evolution and predictive

value of basophil responses in BET children undergoing a shortened 8-month gradual egg

reintroduction protocol.

Methods

Basophil activation testing

BAT was performed on fresh heparinized whole blood samples (Suppl. Material for full

protocol). In brief, samples were stimulated for 20 minutes at 37°C with stimuli dissolved in an

IL3-containing buffer (final concentration 9 ng/mL). Stimuli included 10-fold serial dilutions

of five progressively less heated whole-egg extracts (0.1-100 µg/mL) including cake (35' at

165°C), hard-boiled egg (10' at 100°C), omelet (4' at 120°C), soft-boiled egg (5' at 100°C) and

raw egg. Extracts were prepared as previously described, and characterized in our previously

published work (Suppl. Material) [20]. Mono- and polyclonal anti-human IgE (aIgE, 5 µg/mL),

formyl-methionyl-leucyl-phenylalanine (fMLP, 2 µM) or buffer alone were used as positive

and negative controls, respectively. Stimulation was halted on ice followed by staining with

anti-CD123 PE, anti-HLA-DR AF647 and anti-CD63 FITC. After erythrocyte lysis, a minimum

of 500 basophils (SSClow/CD123+/HLA-DR-) were acquired on the LSR Fortessa flow

cytometer running DIVA software, and analysed with FlowJo 10.8.1. Basophil activation was

measured as %CD63⁺ basophils, corrected for spontaneous CD63-expression by subtracting the

%CD63⁺ basophils in the unstimulated control condition. Children with < 5 %CD63⁺ basophils

to mono- and polyclonal aIgE were classified as non-releasers, henceforth termed non-

responders [9].

Diagnostic cohort

To explore the discriminative capacity of BAT between true egg allergy and tolerance, we

recruited 10 egg allergic (EA), 10 egg-sensitized but tolerant (ET) and 12 non-egg-sensitized

non-allergic (NEA) children from the Pediatrics department of UZ Leuven. Egg allergy was

defined as a clinical type I hypersensitivity response to egg along with a positive egg SPT

(wheal > 3 mm) or egg sIgE ≥ 0.35 kUA/L (ImmunoCAP, lower limit of quantification of 0.10

kUA/L). Children with a prior history of egg allergy who ingested foods containing raw egg

without developing symptoms at the time of inclusion, independent of their egg sIgE's, were

considered complete egg tolerant.

Gradual egg reintroduction cohort (pre-TETI-II study)

Changes in BAT outcome were evaluated in an ongoing pilot study (pre-TETI-II) involving 12

BET children (L1-L12) consecutively reintroducing cake, hard-boiled egg, omelet, soft-boiled

and raw egg over a period of 8 months [20] (Figure 1). This 8-month time period was supported

by findings from our previous study, as several children progressed through the step-wise

protocol at accelerated pace (parental decision) and safely developed raw egg tolerance within

5-12 months [20]. Included children had proven egg allergy along with an ovomucoid sIgE

predicting at least a 75% chance for passing baked egg OFC, but were still supposed to react to

less heated egg products [21,22]. Prior to each reintroduction step, children underwent an in-

hospital OFC with the corresponding egg preparation during which an additional blood sample

was collected for BAT with all five egg extracts (Table S1). If OFCs were tolerated, cake and

hard-boiled egg were further introduced for 3 months at home followed by a 1 month

introduction of omelet and soft-boiled egg. Both studies were approved by the Ethics

Committee Research UZ/KU Leuven and written informed consent was obtained from parents

with accompanying assent of the child from the age of six years onwards.

Statistics

Statistical analysis was performed using GraphPad Prism v.9.2.0 for Windows. Normality was

determined using the D'Agostino and Pearson test. Continuous variables are reported as

medians (interquartile range) or means (95% confidence interval) and compared between

groups using the student t-test or mixed-model analysis when appropriate. Cubic spline and

non-linear regression analysis were used to model the basophil CD63 dose-response for each

extract. Receiver operator characteristic (ROC) curves were constructed to compare the area

under the curve (AUC) for each extract concentration and to determine optimal cutoffs for BAT

positivity based on optimal sensitivity and specificity values. Concentrations eliciting half-

maximal basophil activation (EC50) were derived from best-fit dose-response curves for each

extract. Allergen threshold sensitivity (CD-sens) was calculated by the formula "1/EC50 x 100"

[9]. Correlations between egg sIgE's and BAT responses were evaluated through the Spearman

or Pearson rank correlation test where appropriate. BAT non-responders were excluded from

the statistical analysis of all BAT data. A p-value below 0.05 was considered statistically

significant.

Results

Discriminative capacity of the BAT between egg allergy and tolerance

Among the 10 EA, 10 ET, and 12 NEA children, 2 (6.3%) had non-responder basophils to algE

and were excluded from further analysis. Characteristics of included ET and EA children are

depicted in Table 1. Basophils of EA children showed high CD63-expression when stimulated

with the five egg extracts, with the mean %CD63+ basophils increasing in response to

progressively less heated forms of egg (i.e. increasingly allergenic) (Figure 2, Table S2). In

contrast, basophils of ET and NEA children showed low CD63-expression upon stimulation

with these five egg extracts, with no significant difference between both groups.

Basophil dose-responses of EA children differed across the five extracts, with cake inducing a

progressive increase in CD63-expression up to the maximum concentration of 100 µg/mL

whereas reactivity to hard-boiled egg reached a plateau at 0.10 µg/mL. Omelet, soft-boiled egg

and raw egg induced bell-shaped dose-responses with a decreasing CD63-expression from 1

μg/mL onwards (Figure 2). Compared to cake, the %CD63⁺ basophils was significantly higher

in EA children when stimulated with 0.1 µg/mL of hard-boiled egg, omelet and soft-boiled egg,

and 1 µg/mL of omelet and raw egg (Figure S1). CD63-expression differed significantly

between EA and ET children across all concentrations for all tested extracts with the exception

of 0.1 µg/mL of cake, which could not distinguish EA from ET children (Figure S2). The AUC

of the BAT with each egg extract also significantly differed between EA and ET children

(Figure S3). Accordingly, EA children showed higher basophil sensitivity for all egg extracts,

as expressed by a lower EC50 compared to ET children (Figure 2).

J Investig Allergol Clin Immunol 2025; Vol. 35(2)

Optimal %CD63⁺ cutoff values for discrimination between EA and ET children were calculated

for all tested concentrations (0.1-100 µg/mL), and all five egg extracts using ROC analysis

(Table 2). The area under the ROC curve (AUC ROC) ranged between 0.98 and 1, indicating

excellent discriminative capacity between both groups. Using these cutoffs, BAT sensitivity in

discriminating EA from ET children ranged from 90% to 100% with a specificity of 100% and

false positive rate (FPR) of 2.78% (data not shown). Only the 0.1 µg/mL cake extract had a

lower AUC ROC of 0.65, corresponding to a 66.67% sensitivity and 55.56% specificity. When

comparing this to the diagnostic accuracy of egg sIgE's using the classic cutoff of 0.35 kUA/L,

the AUC ROC ranged from 0.89 to 1, with corresponding sensitivities between 90-100%, and

specificities between 50-78% (Table S3). Ovomucoid sIgE had the highest AUC ROC value

(1.00), which could discriminate EA from ET children with a 100% sensitivity and 60%

specificity, resulting in a FPR of 40%. Alternatively, using the lower limit of detection of 0.10

kU/L for egg sIgE's resulted in an even lower specificity between 20-44% (Table S3). Next,

we sought to improve diagnostic accuracy of egg sIgE's by calculating optimal cutoffs for each

sIgE based on ROC analysis (Table S3). When applying these cutoffs in our cohort, higher

specificities ranging from 80 to 100 % were achieved with minimal reduction in sensitivity.

Additionally, egg white and ovalbumin sIgE's correlated positively with BAT dose-response

AUC and maximal %CD63⁺ basophils in response to cake, hard-boiled egg, and omelet (Table

S4). Ovomucoid sIgE's also positively correlated with the AUC of cake (r=0.51, p=0.03).

Outcome of gradual egg reintroduction and comparison of OFC and BAT

Out of the 12 included BET children, 9 successfully passed all five OFCs and subsequent home-

based introduction without major symptoms (Table S5). Two children stopped the study earlier

due to an allergic reaction during the hard-boiled egg (L8: grade I) or soft-boiled egg (L2: grade

II) OFC. No clinically significant changes in blood pressure, tryptase or complement

components were observed during OFCs in any of the children (Table S6). Patient L9 and L11

had elevated tryptase levels before OFCs, which was most likely attributable to hereditary

alpha-tryptasemia given absence of signs of primary mast cell disease. Though, genetic testing

was not available at that time. Based on current evidence, no interaction with food allergy nor

basophil responses was expected [24]. One child (L3) discontinued the study due to an itchy

tongue whenever eating runny egg yolk at home, despite passing the soft-boiled egg OFC. The

clinical features of the study population are provided in Table 3.

To evaluate whether BAT could predict OFC-associated symptoms, we applied the previously

defined %CD63⁺ cutoff values at 10 µg/mL of each extract, which had the highest sensitivity

and specificity as well as the lowest workload (fewer dilutions), thus decreasing the risk of

errors by manipulation (Table 2). Table 4 shows BAT responses to each extract with the

outcome of their corresponding OFC. Three children (L8, 10, 11) were non-responders at the

start, with one child (L11) becoming a responder at visit (V) three. Overall, out of 45 study

visits with available results for concurrent BAT and OFC, nine (20%) were uninterpretable due

to non-responding basophils. From the remaining 36 informative BATs, 31 (86.1%) were

concordant with OFC outcome whereas 5 (13.8%) were false positive.

Evolution of BAT responses during tolerance development

No significant changes were noted in the %CD63⁺ basophils to aIgE and fMLP from baseline

to end of the study, including those with non-responding basophils (Figure S4). Overall, we

observed a decreasing trend in basophil responses to all five egg extracts between the first and

last study visit, though these differences did not reach statistical significance (Figure 3, Figure

S5). This decrease in the %CD63⁺ basophils was most pronounced in the BAT with omelet

followed by soft-boiled egg, hard-boiled egg, raw egg and cake, respectively (Figure 4).

Additionally, basophil sensitivity decreased for all egg extracts over the course of the graduated

protocol, as expressed by an increasing EC50 from first to last study visit (Figure 3). This

increase in EC50 was most pronounced for raw egg, while only a small difference was found

for cake. No significant changes were noted in egg sIgE's and total IgE from baseline to end

of the study (Figure S6). We found a positive correlation between egg white and ovalbumin

sIgE's and the dose-response AUC and maximal %CD63+ basophils to cake at the first study

visit. Similarly, at the final study visit, the dose-response AUC of the BAT with soft-boiled egg

correlated positively with egg white sIgE's (r=0.69, p=0.04, Table S7).

Discussion

In this study, BAT was evaluated as a diagnostic tool for egg allergy using progressively less

heated forms of egg. We demonstrate that our BAT protocol can discriminate clinically relevant

from irrelevant IgE sensitization in egg allergic versus complete egg tolerant children, with a

lower FPR and superior specificity to egg sIgE's applying the classic 0.35 kUA/L cutoff.

Until now, several studies have evaluated the diagnostic accuracy of BAT to egg white or native

egg proteins such as ovalbumin and ovomucoid [10–12]. Our study is the first to validate BAT

with whole-egg extracts prepared under different heating conditions, which more closely

approximate egg exposure in daily life. In our previous study, we characterized these extracts

and demonstrated that heating led to the disappearance of ovalbumin due to formation of

insoluble aggregates [20]. Recently, Claude et al. showed that heat-aggregated ovalbumin had a

lower basophil degranulation ability than native ovalbumin [25]. In our group of EA children,

basophil reactivity was also higher to raw egg containing native ovalbumin and decreased in

response to variously heated forms of egg containing heat-aggregated ovalbumin. Hereby,

basophil responses to cake were significantly lower compared to several less heated egg extracts

at 0.1 and 1 µg/mL. Although, no significant difference was found between basophil responses

to hard-boiled egg, omelet, soft-boiled egg and raw egg, despite the difference in thermal

processing and consequently allergenicity. This could indicate that these EA children weren't

close to acquiring tolerance to these less heated egg forms. Additionally, basophil reactivity at

the maximal concentration of cake was higher compared to the degranulation observed at

similar concentrations of more allergenic forms of egg. We hypothesize that at higher

concentrations of cake, digestion becomes a more important factor in this extract-based set-up.

Indeed, wheat further decreases the allergenicity of egg proteins by hampering their

accessibility to digestion in vivo, which was not accounted for in our experimental setup [26].

In comparison to the classic sIgE cutoff of 0.35 kUA/L, BAT predicted egg reactivity with a

superior specificity and lower FPR. Lowering the cut-off to 0.10 kUA/L for analysing the

results offered an even lower specificity compared to 0.35 kUA/L, but the clinical relevance of

sIgE's between 0.10-0.35 kUA/L still remains a matter of debate for certain allergens like hen's

egg [27]. However, when optimal cutoffs were selected from the ROC curve equivalent

specificities to BAT were achieved with minimal loss in sensitivity. This shows that clinical

decision points of egg sIgE's largely depend on the study population with age, atopic co-

morbidities and severity of the allergic reaction being influencing factors [28]. Ultimately,

demonstrating that a uniform cutoff of 0.35 kUA/L has limited clinical relevance, although it

remains widely applied in clinical practice. The optimal cutoffs for egg sIgE's and BAT in this

study should therefore also be validated in a larger cohort of egg allergic and tolerant children.

In the pre-TETI-II study, 9 out of 12 BET children developed complete raw egg tolerance within

approximately 8 months while 3 children experienced adverse events leading to early

withdrawal. Two allergic reactions took place during the hard-boiled and soft-boiled egg OFC

while one child reacted during home-based introduction of soft-boiled egg despite passing the

corresponding OFC. Overall, BAT and OFC outcomes were concordant in over 86% of

informative cases. Nevertheless, the small number of children experiencing allergic reactions

during OFCs, and the absence of interpretable concurrent BAT results for the few in-hospital

reactors preclude us from drawing a definitive conclusion on the ability of BAT to predict OFC-

associated symptoms. It must be noted that two children passed OFCs, while BAT with the

corresponding egg extract was positive. We cannot rule out that these children might have

reacted during the OFC if a higher dose would have been administered (e.g. 4.4 g of egg white

protein as per EAACI guidelines vs 2.82 g; Figure 1) [29]. Indeed, in subject L2, the positive

BAT at V2 might have been an early indication of decreased tolerance which predisposed for

the positive OFC at V4.

During the course of our gradual reintroduction protocol, basophil reactivity and sensitivity

tended to decrease to all five egg preparations, though these differences did not reach statistical

significance. Previous egg oral immunotherapy studies showed significant decreases in CD63-

expression to egg (white), ovalbumin or ovomucoid along with clinical evidence of tolerance

development at the end of the treatment [14–19]. Possible explanations for our lack of observed

significant difference in basophil reactivity includes small sample size, relatively high

percentage of non-responders and short duration of the gradual protocol. Indeed, studies have

shown that basophil reactivity can be influenced by the duration of immunotherapy as well as

the dose of the food allergen [30]. The higher proportion of non-responders in our egg

reintroduction (20%, 9/45 visits) and diagnostic cohort (6%, 2/32 children), compared to 15%

stated in literature, was likely due to coincidence given the limited sample size [9].

Additionally, we included BET children with a transient egg allergy phenotype, who already

had lower basophil reactivity to the five whole-egg extracts at baseline compared to EA

children, despite only tolerating baked egg. Though, these EA children were still far from

acquiring baked egg tolerance. On the other hand, Kim et al. also found no significant decrease

in %CD63⁺ basophils to egg white after treatment with muffin over a 2-year period [17].

Clearly, validation of BAT as a marker of tolerance induction would require a larger cohort of

BET children undergoing gradual reintroduction over a longer period of time. To this end, we

are currently studying the evolution of the CD63-based BAT to gradually less heated egg

preparations in a larger multicentric cohort of BET children undergoing a 12- or 20-month

gradual egg-introducing protocol (TETI-II study, NCT04677790). A limitation of our study

was reliance on a CD63/IL-3 based protocol with omission of CD203c as an additional

activation marker, since IL-3 upregulates CD203c in an allergen-independent manner, limiting

its interpretability [9,30,31]. Lastly, we didn't evaluate the influence of natural egg-tolerance

development on the BAT of EA children after 8 months, which could have influenced the BAT

of BET children undergoing the 8-month protocol. Additional limitations to consider when

implementing BAT in clinical practice are the prevalence of non-responders, inevitably

resulting in uninterpretable BAT results, as well as the need for fresh blood, trained personnel,

a flow cytometer and standardization (protocol, extracts) [9,31].

Lastly, we found a significant correlation between egg white and ovalbumin sIgE's and basophil

responses to cake, hard-boiled egg and omelet in EA and ET children. This is concurrent with

earlier observations by Kim et al. who found that the %CD63⁺ basophils to egg white positively

correlated with egg white sIgE's of children with and without egg allergy [12]. Additionally,

BAT dose-response AUC to cake correlated with ovomucoid sIgE's, which is to be expected

as low IgE's to heat stable ovomucoid have been associated with a higher chance of tolerating

baked egg [21,22]. Similarly, in the gradual reintroduction cohort, egg white sIgE's and

basophil response to either cake or soft-boiled egg correlated positively at the beginning and

end of the treatment, respectively. This evolution could be seen as a reflection of development

of clinical tolerance in EA children which starts with tolerance to baked egg and ends with

tolerance to lightly cooked and raw egg. In the future, it could be of interest to evaluate

integration of BAT results with egg sIgE's in a larger cohort of children undergoing OFCs to

construct a predictive model for tolerance development. From a diagnostic standpoint, similar

to the approach proposed by Santos et al. in peanut allergy, use of BAT as a second-line

diagnostic tool after sIgE measurement could be an accurate and cost-efficient diagnostic

method in hen's egg allergy [23].

In conclusion, we demonstrate for the first time that BAT with progressively less heated egg

extracts is a sensitive and highly specific tool to discriminate egg allergic from egg-sensitized

children who have completely outgrown their egg allergy. In the future, it would be interesting

to compare these whole-egg extracts with classical egg white extracts and individual egg

allergens to determine which strategy offers optimal discriminative capabilities. Egg sIgE

measurement remains a valuable first-line diagnostic tool. However, allergen- and patient-

specific cutoffs are required to optimize diagnostic accuracy in distinguishing between

sensitization and true allergy. As BET children evolved along the gradual process of tolerance

development, basophil reactivity and sensitivity to progressively less heated forms of egg

tended to decrease over time while tolerance was installed. Additional studies in larger cohorts

of BET children undergoing gradual introduction over longer time periods are ongoing to help

determine the value of BAT with whole-egg extracts as a non-invasive tool to predict clinical

outcome and tolerance induction.

Congress

This work was presented at the EAACI Food Allergy School (2023, Taormina) and awarded

with a price for best oral presentation.

Funding statement

DB and RS are recipients of a senior clinical investigator fellowship from the Fund for

Scientific Research Flanders (FWO; 1801019N 1805518N, and 1805523N). The study was

supported with a TBM project grant from FWO (T001419N) and KOOR funding from UZ

Leuven.

Conflict of interest

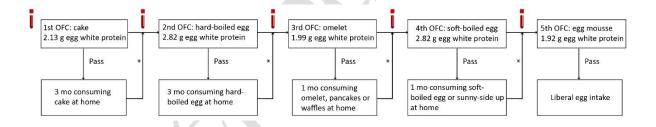
The authors declare that the research was conducted in the absence of any commercial or

financial relationships that could be construed as a potential conflict of interest.

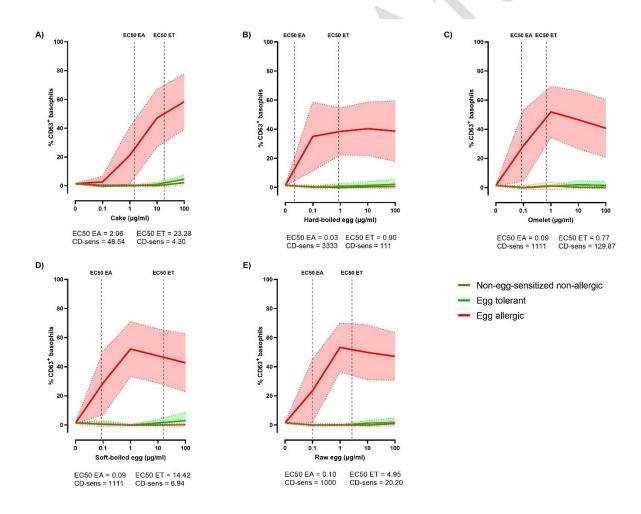
References

- 1. Oriel RC, Wang J. Diagnosis and Management of Food Allergy. Pediatr Clin North Am. 2019 Oct;66(5):941–54.
- 2. Flores Kim J, McCleary N, Nwaru BI, Stoddart A, Sheikh A. Diagnostic accuracy, risk assessment, and cost-effectiveness of component-resolved diagnostics for food allergy: A systematic review. Allergy. 2018 Aug;73(8):1609–21.
- 3. Soares-Weiser K, Takwoingi Y, Panesar SS, Muraro A, Werfel T, Hoffmann-Sommergruber K, et al. The diagnosis of food allergy: a systematic review and meta-analysis. Allergy. 2014 Jan;69(1):76–86.
- 4. Sampson HA. Utility of food-specific IgE concentrations in predicting symptomatic food allergy. J Allergy Clin Immunol. 2001 May;107(5):891–6.
- 5. Bird JA, Leonard S, Groetch M, Assa'ad A, Cianferoni A, Clark A, et al. Conducting an Oral Food Challenge: An Update to the 2009 Adverse Reactions to Foods Committee Work Group Report. J Allergy Clin Immunol Pract. 2020 Jan;8(1):75-90.e17.
- 6. Perry TT, Matsui EC, Conover-Walker MK, Wood RA. Risk of oral food challenges. J Allergy Clin Immunol. 2004 Nov;114(5):1164–8.
- 7. Santos AF, Shreffler WG. Road map for the clinical application of the basophil activation test in food allergy. Clin Exp Allergy. 2017 Sep;47(9):1115–24.
- 8. Briceno Noriega D, Teodorowicz M, Savelkoul H, Ruinemans-Koerts J. The Basophil Activation Test for Clinical Management of Food Allergies: Recent Advances and Future Directions. J Asthma Allergy. 2021 Nov;Volume 14:1335–48.
- 9. Santos AF, Alpan O, Hoffmann H. Basophil activation test: Mechanisms and considerations for use in clinical trials and clinical practice. Allergy. 2021 Aug 27;76(8):2420–32.
- 10. Ocmant A, Mulier S, Hanssens L, Goldman M, Casimir G, Mascart F, et al. Basophil activation tests for the diagnosis of food allergy in children. Clin Exp Allergy. 2009 Aug;39(8):1234–45.
- 11. Sato S, Tachimoto H, Shukuya A, Kurosaka N, Yanagida N, Utsunomiya T, et al. Basophil activation marker CD203c is useful in the diagnosis of hen's egg and cow's milk allergies in children. Int Arch Allergy Immunol. 2010;152(SUPPL. 1):54–61.
- 12. Kim YH, Kim YS, Park Y, Kim SY, Kim KW, Kim HS, et al. Investigation of basophil activation test for diagnosing milk and egg allergy in younger children. J Clin Med. 2020;9(12):1–12.
- 13. Berin MC, Grishin A, Masilamani M, Leung DYM, Sicherer SH, Jones SM, et al. Egg-specific IgE and basophil activation but not egg-specific T-cell counts correlate with

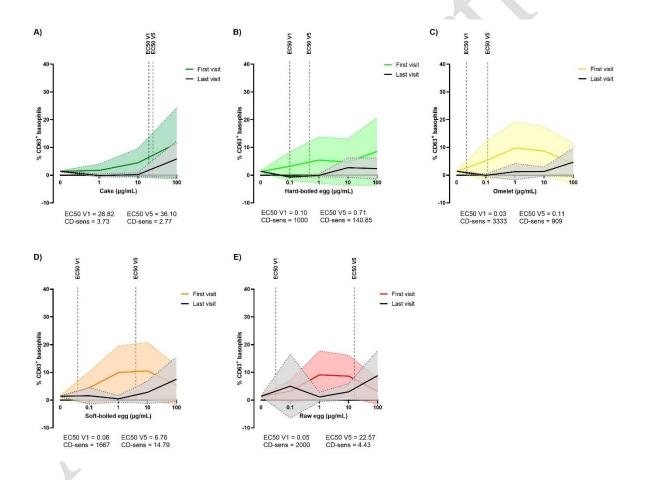
- phenotypes of clinical egg allergy. J Allergy Clin Immunol. 2018 Jul;142(1):149-158.e8.
- 14. Giavi S, Vissers YM, Muraro A, Lauener R, Konstantinopoulos AP, Mercenier A, et al. Oral immunotherapy with low allergenic hydrolysed egg in egg allergic children. Allergy. 2016 Nov;71(11):1575–84.
- 15. Vila L, Moreno A, Gamboa PM, Martínez-Aranguren R, Sanz ML. Decrease in antigenspecific CD63 basophil expression is associated with the development of tolerance to egg by SOTI in children. Pediatr Allergy Immunol. 2013;
- 16. Itoh-Nagato N, Inoue Y, Nagao M, Fujisawa T, Shimojo N, Iwata T, et al. Desensitization to a whole egg by rush oral immunotherapy improves the quality of life of guardians: A multicenter, randomized, parallel-group, delayed-start design study. Allergol Int. 2018 Apr;67(2):209–16.
- 17. Kim EH, Perry TT, Wood RA, Leung DYM, Berin MC, Burks AW, et al. Induction of sustained unresponsiveness after egg oral immunotherapy compared to baked egg therapy in children with egg allergy. J Allergy Clin Immunol. 2020 Oct;146(4):851-862.e10.
- 18. Burks AW, Jones SM, Wood RA, Fleischer DM, Sicherer SH, Lindblad RW, et al. Oral Immunotherapy for Treatment of Egg Allergy in Children. N Engl J Med. 2012 Jul 19;367(3):233–43.
- 19. Gamboa PM, Garcia-Lirio E, Gonzalez C, Gonzalez A, Martinez-Aranguren R M SML. Is the Quantification of Antigen-Specific Basophil Activation a Useful Tool for Monitoring Oral Tolerance Induction in Children With Egg Allergy? J Investig Allergol Clin Immunol. 2016 Feb 1;26(1):25–30.
- 20. De Vlieger L, Nuyttens L, Matton C, Diels M, Verelst S, Leus J, et al. Guided Gradual Egg-Tolerance Induction in Hen's Egg Allergic Children Tolerating Baked Egg: A Prospective Randomized Trial. Front Allergy. 2022;3(May):1–14.
- 21. Bartnikas LM, Sheehan WJ, Larabee KS, Petty C, Schneider LC, Phipatanakul W. Ovomucoid Is Not Superior to Egg White Testing in Predicting Tolerance to Baked Egg. J Allergy Clin Immunol Pract. 2013 Jul;1(4):354-360.e2.
- 22. Ando H, Movérare R, Kondo Y, Tsuge I, Tanaka A, Borres MP, et al. Utility of ovomucoid-specific IgE concentrations in predicting symptomatic egg allergy. J Allergy Clin Immunol. 2008;122(3):583–8.
- 23. Santos AF, Douiri A, Bécares N, Wu SY, Stephens A, Radulovic S, et al. Basophil activation test discriminates between allergy and tolerance in peanut-sensitized children. J Allergy Clin Immunol. 2014 Sep;134(3):645–52.
- 24. Lyons JJ, Sun G, Stone KD, Nelson C, Wisch L, O'Brien M, et al. Mendelian inheritance of elevated serum tryptase associated with atopy and connective tissue abnormalities. J Allergy Clin Immunol. 2014 May;133(5):1471–4.


doi: 10.18176/jiaci.0964

J Investig Allergol Clin Immunol 2025; Vol. 35(2)


- 25. Claude M, Lupi R, Picariello G, Drouet M, Larré C, Denery-Papini S, et al. Digestion differently affects the ability of native and thermally aggregated ovalbumin to trigger basophil activation. Food Res Int. 2019 Apr;118(September 2017):108–14.
- 26. Benedé S, López-Expósito I, Molina E, López-Fandiño R. Egg proteins as allergens and the effects of the food matrix and processing. Food Funct. 2015;6(3):694–713.
- 27. Nilsson SF, Lilja G, Järnbert-Pettersson H, Alm J. Relevance of low specific IgE levels to egg, milk and peanut in infancy. Clin Exp Allergy. 2019 Mar;49(3):308–16.
- 28. Foong R, Santos AF. Biomarkers of diagnosis and resolution of food allergy. Pediatr Allergy Immunol. 2021 Feb;32(2):223–33.
- 29. Calvani M, Bianchi A, Reginelli C, Peresso M, Testa A. Oral Food Challenge. Medicina (B Aires). 2019 Sep 27;55(10):651.
- 30. Schoos AM, Bullens D, Chawes BL, Costa J, De Vlieger L, DunnGalvin A, et al. Immunological Outcomes of Allergen-Specific Immunotherapy in Food Allergy. Front Immunol. 2020;11(November).
- 31. De Week AL, Sanz ML, Gamboa PM, Aberer W, Bienvenu J, Blanca M, et al. Diagnostic tests based on human basophils: more potentials and perspectives than pitfalls. II. Technical issues. J Investig Allergol Clin Immunol. 2008;18(3):143–55.
- 32. Chinthrajah RS, Jones SM, Kim EH, Sicherer SH, Shreffler W, Lanser BJ, et al. Updating the CoFAR Grading Scale for Systemic Allergic Reactions in Food Allergy. J Allergy Clin Immunol. 2022;1–6.

LEGEND TO FIGURES


Figure 1. 8-month gradual egg-introduction protocol. OFC: oral food challenge, mo: month. Blood samples were drawn prior to and 1 hour after each OFC to evaluate egg sIgE, tryptase level and complement activation. During the home introduction, age-appropriate portions were incorporated 2-3 times/week into the child's diet. Parents monitored the frequency of consumption, allergic reactions, medication or illness by food diary. The child could proceed to the next OFC if no allergic reactions occurred during the introduction of the previous egg preparation at home (*). Adverse allergic events were categorized according to the CoFAR grading scale for allergic reactions (version 3.0) [32]. The amount of egg white protein indicated equals the cumulative dose administered during the OFC (Table S1).

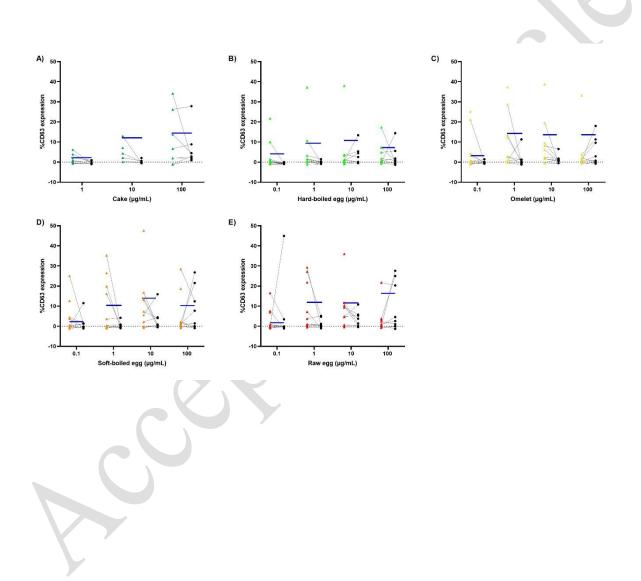

Figure 2. Cubic spline regression analysis of the basophil CD63 dose-response to increasing concentrations of cake (A), hard-boiled egg (B), omelet (C), soft-boiled egg (D), and raw egg (E) in egg allergic (EA, red), complete egg tolerant (ET, green) and non-egg-sensitized non-allergic (NEA, brown) children. The regression curves are shown in bold and represent the mean %CD63⁺ basophils for each group. The shaded area represents the 95% confidence interval. EC50 values were obtained from the non-linear regression analysis for EA and ET children.

Figure 3. Cubic spline regression analysis of basophil CD63 dose-response to increasing concentrations of cake (A), hard-boiled egg (B), omelet (C), soft-boiled egg (D), and raw egg (E) during the first (V1) and last (V5) study visit of the pre-TETI-II study. Data of all participating children were included, excluding non-responders (n=2). The regression curves are shown in bold and represent the mean %CD63⁺ basophils for each group. The shaded area represents the 95% confidence interval. EC50 values were obtained from the non-linear regression analysis for V1 and V5.

Figure 4. Basophil CD63 dose-response to cake (A), hard-boiled egg (B), omelet (C), soft-boiled egg (D), and raw egg (E) during the first and last study visit of the pre-TETI-II study (paired data). Data of all participating children were included, excluding non-responders (n=2). The blue line represents the defined cutoff for each concentration (Table 2).

TABLES

Table 1. Characteristics of the egg allergic and complete egg tolerant children at the time of performing the basophil activation test.

	Age (y)	Gender	Initial egg allergic reaction*	Total IgE (kU/L)	IgE EW (kUA/L)	IgE EY (kUA/L)	IgE OVM (kUA/L)	IgE OVA (kUA/L)
EA 1	4	Girl	Grade III	703	12.1	5.89	7.96	8.96
EA 2	2	Boy	Grade I	864	3.02	0.90	2.04	1.00
EA 3	3	Boy	Grade I	297	4.02	1.19	3.8	1.02
EA 4	4	Boy	Grade I	939	14.9	17.2	4.44	5.31
EA 5+	<1	Girl	Grade II	256	16.3	4.77	8.42	12.3
EA 6	2	Girl	Grade I	1467	32	5.89	39.4	6.03
EA 7	2	Girl	Grade II	187	13	1.7	20.8	2.31
EA 8	3	Boy	Grade I	280	29	6.86	29.6	12.4
EA 9	1	Girl	Grade I	19	1.15	0.32	1.08	0.62
EA 10	6	Boy	Grade I	2018	5.43	2.16	4.46	3.31
MED (IQR)	2.5 (1.75-4)			500 (238.8-1071)	12.55 (3.77-19.48)	4.77 (1.7-5.89)	6.21 (3.36-23)	5.31 (1.67-10.63)
ET 1	8	Boy	Grade I	278	0.82	0.1	0.64	0.1
ET 2	2	Boy	Grade I	23	0.77	0.24	0.1	1
ET 3+	5	Girl	Grade I	105	0.23	0.1	0.33	0.1
ET 4	2	Boy	Grade I	8	0.1	0.1	0.1	0.1
ET 5	10	Boy	Grade I	2814	1.2	0.91	0.49	1.36
ET 6	8	Boy	Grade I	2133	0.16	0.12	0.16	0.13
ET 7	8	Boy	Grade I	1232	0.4	0.13	0.52	0.15
ET 8	16	Girl	Grade II	120	0.11	-	0.1	0.12
ET 9	4	Girl	Grade I	51	0.32	0.1	0.25	-
ET 10	5	Boy	Grade I	58	6.13	1.66	0.68	3.62
MED (IQR)	6.5 (3.5-8.5)			112.5 (44-1457)	0.36 (0.15-0.92)	0.10 (0.1-0.91)	0.25 (0.10- 0.51)	0.11 (0.10-1.66)

EA: egg allergic, ET: complete egg tolerant, EW: egg white, EY: egg yellow, OVM: ovomucoid, OVA: ovalbumin. ⁺ Non-responder to anti-IgE. * Based on medical record, according to the CoFAR grading scale for allergic reactions (version 3.0) [32].

Table 2. Optimal cutoff values for %CD63⁺ basophils to the five egg extracts with the largest area under the ROC curve.

Extract	Concentration	AUC ROC	Cutoff	Sensitivity (%)	Specificity (%)
			(%CD63 ⁺		
			basophils)		
Cake	100 μg/mL	1 (1-1)	14.40	100 (84.54-100)	100 (70.09-100)
	<u>10 μg/mL</u>	1 (1-1)	<u>12.14</u>	100 (84.54-100)	100 (70.09-100)
	1 μg/mL	1 (1-1)	2.14	100 (84.54-100)	100 (70.09-100)
	0.1 μg/mL	0.65 (0.41-0.89)	0.52	66.67 (45.37-82.81)	55.56 (26.67-81.12)
Hard-	100 μg/mL	0.98 (0.96-1)	7.27	95.24 (77.33-99.76)	100 (70.09-100)
boiled egg	<u>10 μg/mL</u>	1 (1-1)	<u>10.75</u>	100 (84.54-100)	100 (70.09-100)
	1 μg/mL	1 (1-1)	9.59	100 (84.54-100)	100 (70.09-100)
	0.1 μg/mL	1 (1-1)	4.09	100 (84.54-100)	100 (70.09-100)
Omelet	100 μg/mL	1 (1-1)	13.94	100 (84.54-100)	100 (70.09-100)
	<u>10 μg/mL</u>	1 (1-1)	<u>13.94</u>	100 (84.54-100)	100 (70.09-100)
	1 μg/mL	1 (1-1)	14.26	100 (84.54-100)	100 (70.09-100)
	0.1 μg/mL	1 (1-1)	3.27	100 (84.54-100)	100 (70.09-100)
Soft-boiled	100 μg/mL	0.99 (0.96-1)	10.21	95.24 (77.33-99.76)	100 (70.09-100)
egg	<u>10 μg/mL</u>	1 (1-1)	<u>13.88</u>	100 (84.54-100)	100 (70.09-100)
	1 μg/mL	1 (1-1)	10.27	100 (84.54-100)	100 (70.09-100)
	0.1 μg/mL	0.98 (0.94-1)	2.30	90.48 (71.09-98.31)	100 (70.09-100)
Raw egg	100 μg/mL	1 (1-1)	16.44	100 (84.54-100)	100 (70.09-100)
	<u>10 μg/mL</u>	1 (1-1)	<u>11.68</u>	100 (84.54-100)	100 (70.09-100)
	1 μg/mL	1 (1-1)	11.93	100 (84.54-100)	100 (70.09-100)
	0.1 μg/mL	0.99 (0.98-1)	1.74	95.24 (77.33-99.76)	100 (70.09-100)

AUC ROC: area under the receiver operating characteristic curve. Sensitivity and specificity are expressed as means (95% confidence interval). The underlined concentration and cutoff were applied in the pre-TETI-II study.

Table 3. Baseline demographic and clinical characteristics of patients included in the pre-TETI-II study.

	Age (y)	Gender	Atopy	Initial egg allergic reaction*	Total IgE (kU/L)	IgE EW (kUA/L)	IgE EY (kUA/L)	IgE OVM (kUA/L)	IgE OVA (kUA/L)
L1	7	Boy	AE, AA, AR	Grade I	487	0.48	0.12	0.52	0.12
L2	9	Boy	AE, AA, AR	Grade III	2961	5.39	4.17	0.68	8.06
L3	4	Boy	AE	Grade III	96	0.24	0.1	0.1	0.32
L4	2	Girl	AE	Grade I	207	0.52	0.17	0.1	0.56
L5	2	Girl	AE	Grade III	686	0.24	0.12	0.1	0.26
L6	2	Boy	AE	Grade I	369	0.89	0.56	0.1	1.11
L7	2	Boy	AE	Grade I	64	2	1.18	0.1	1.13
L8	10	Boy	AE, AA	Grade III	576	4.01	1.54	0.8	3.77
L9	2	Girl	AE	Grade III	929	0.24	0.2	0.1	0.22
L10	8	Girl	AE, AA, AR	Grade III	509	1.25	0.53	1.15	0.64
L11	4	Boy	N/A	Grade III	244	1.44	1.3	0.1	2.02
L12	4	Boy	AE, AR	Grade I	1511	2.74	1.45	2.19	1.69
MED	4			1	498	1.070	0.55	0.10	0.88
(IQR)	(2-7.75)				(216.3-	(0.30-	(0.13-	(0.10-	(0.28-
					868.3)	2.56)	1.41)	0.77)	1.94)

AE: atopic eczema, AA: allergic asthma, AR: allergic rhinitis, EW: egg white, EY: egg yellow, OVM: ovomucoid, OVA: ovalbumin. * Based on medical record, according to the CoFAR grading scale for allergic reactions (version 3.0) [32].

Table 4. Basophil response (%CD63⁺ basophils) to 10 μg/mL of the five egg extracts compared with their corresponding oral food challenge during the pre-TETI-II study.

	Cake V1	Hard-boiled egg V2	Omelet V3	Soft-boiled egg V4	Raw egg V5
L1			6.21		3.75
L2		37.96			
L3		1.11		2.57	1.34
L4	0.11	5.64	6.26	3.76	0.09
L5		0	0	0	0.25
L6	7.14	1.15	2.9	6.16	0
L7	12.96	13.96	22.76	14.91	5.78
L8	9.49	0.61			
L9	0.09	0.24	0	0.51	0
L10	0	1.36	0.85	1.92	0
L11	1.33	0	2.45	9.94	5.29
L12		3.21		10.5	10.81
Cutoff	12.14	10.75	13.94	13.88	11.68

Red boxes: children that experienced an allergic reaction during an oral food challenge. Yellow areas: non-responder basophils (L11 became a responder at V3). Green areas: concordant BAT and OFC results. Blue areas: %CD63⁺ basophils above previously defined optimal cutoff. White areas: BAT was not performed due to practical difficulties, or results were not available due to a technical error (L5 cake V1).