8. Special circumstances

8.1 ASTHMA-COPD overlap syndrome (ACOS)

8.1.1. Concept and definition

Asthma and chronic obstructive pulmonary disease (COPD) are two different chronic respiratory diseases, although it is common to find the characteristics of both diseases in a single patient.

Asthma and smoking, low pulmonary function in childhood, exposure to irritants or environmental contamination can contribute to the development of associated COPD in adulthood.

The GesEPOC-GEMA consensus defines asthma-COPD overlap syndrome (ACOS) as the presence of persistent chronic airflow limitation (CAL) (crucial for diagnostic confirmation), in a current smoker or ex-smoker patient (main risk factor), who presents characteristics of asthma (clinical, biological or functional).

Different definitions of ACOS have been proposed, the most recent of which are based on two types of patients:

– An asthma patient who smoke and develop chronic airway obstruction.

– Patients with COPD and eosinophilia.

The prevalence of ACOS varies according to the source considered and criteria used for definition, with estimates between 1.6% and 4.5% in the general population, and between 15% and 25% in patients with obstructive respiratory disease.

Patients with ACOS have more symptoms, poorer quality of life, higher risk of exacerbations, more accelerated loss of pulmonary function, higher incidence of comorbidities and greater consumption of healthcare resources as compared to patients with asthma or COPD, but a better survival when treated with inhaled glucocorticoids (IGC).

The mortality of chronic respiratory disease is higher in patients with ACOS or COPD than in those without chronic airway obstruction.

8.1.2. Diagnostic confirmation

The following sequential diagnostic evaluation is proposed (Figure 8.1):

- To confirm that the patient meets criteria for COPD (≥ 35 years, smoker > 10 pack-years, post-bronchodilation forced expiratory volume in one second/forced vital capacity [FEV1/FVC] < 70% [assessing the lower limit of normal, particularly at extreme ages]).

- If the patient also meets criteria for asthma, ACOS is confirmed.

If the patient does not meet complete criteria for asthma, a very positive bronchodilation test (FEV1 post-bronchodilation ≥ 15% and 400 ml) or blood eosinophilia (≥ 300 cells/µl), confirms the diagnosis of ACOS.

8.1.3. Treatment

Although the initial treatment does not differ between patients with pure asthma and those with overlap syndrome, in patients with COPD, a diagnosis of ACOS predicts the response to IGC. There are proposals for the treatment of
ACOS according to its treatable features52,53 that should be agreed upon.

Therapeutic recommendations in patients with ACOS

- If the diagnostic evaluation only confirms asthma, it will be treated according to GEMA guidelines47, avoiding monotherapy with long-acting β\textsubscript{2}-adrenergic agonist (LABA).
- If the diagnostic evaluation only confirms COPD, it will be treated according to GesEPOC guidelines46, avoiding monotherapy with IGC.
- If the evaluation confirms ACOS: start with a combination of IGC at low or moderated doses according to symptoms54, associated with LABA55-59.
- In case of persistence of exacerbations or relevant symptoms, it is recommended adding a long-acting muscarinic agonist (LAMA)60,61.
- Treatment of comorbidities.
- Treatment with biologics: the role of omalizumab62-67 or anti-leukin-5 (anti-IL-5) (benralizumab68,69 or mepolizumab67,70,71) in ACOS remains unclear72.
- Other treatments (when necessary): smoking cessation, respiratory rehabilitation, oxygen therapy.
- Patients should be referred to a specialized consultation in case of lack of response or partial response to the prescribed treatment.
- Periodic follow-up assessments should be established.

8.2. Asthma and pregnancy

Asthma is the most common respiratory disease in pregnancy and affects between 2% and 13% of all pregnant women73. Up to 18% of asthmatic pregnant women present worsening of her asthma during gestation, increasing to 50% in case of severe asthma75-77. This may be due to mechanical and hormonal changes, the reluctance on the part of pregnant women to use medications and the degree of previous control of the disease76.

8.2.1. Effects of asthma on pregnancy

Although the risk is low, pregnant women with asthma may present maternal and fetal complications. In the neonate, poor asthma control is associated with prematurity, low birthweight and increased perinatal mortality, whereas in the mother there is an increased risk of pre-eclampsia, placenta previa and gestational diabetes77. Prevention of exacerbation is essential for reducing the risk of complications78.

Poor adherence to treatment and upper respiratory tract infections are the most common trigger factors for exacerbations77.

Women with other comorbidities, such as rhinitis, obesity, sudden increase of body weight during the first trimester of gestation and smoking habit have a poorer control of asthma during pregnancy80,81.

8.2.2. Treatment of asthma in pregnancy

Virtually all drugs used in the treatment of asthma cross the placental barrier; however, the advantage of treating asthma during pregnancy outweighs the potential shortcomings of the use of medication73,76,81.

The appropriate use of IGC, LABA, montelukast and theophylline is not associated with an increase of fetal abnormalities82.

IGC prevent asthma exacerbations during pregnancy83.

Budesonide and other IGC are safe drugs84,85. A study carried out in 2014 in neonates born from mothers treated with inhaled budesonide during pregnancy showed a higher rate of teratogenesis (3.8%) as compared with the general population (3.5%)86.

Although safety studies of β\textsubscript{2}-agonists during pregnancy are not totally conclusive, and a recent study revealed a slightly higher risk for the incidence of cleft palate and gastrochisis87, the use of these compounds is permitted88.

Oral glucocorticoids (OGC) cause teratogenic effects, and their use should be restricted to asthma exacerbations and severe asthma89.

Omalizumab has not shown a higher association with congenital abnormalities, prematurity or low birthweight, but is not recommended starting its administration during pregnancy because of the risk of anaphylaxis89,91.

The same algorithms for the treatment of exacerbations in non-pregnant women with asthma should be followed, ensuring in addition an adequate fetal oxygenation (SaO\textsubscript{2} > 95%) and monitoring73,76.

Control of asthma and prevention of exacerbation can be improved during pregnancy using measurement of FeNO\textsubscript{2}, questionnaires such as the Pregnancy Asthma Control Test (p-CAT) or the Asthma Control Questionnaire (ACQ) or telehealth92-95.

8.3. Occupational asthma

Occupational asthma (OA) is asthma induced by work exposure and caused by agents exclusively found in the workplace (Table 8.1). It is the most common occupational respiratory disease and the risk attributable to workplace exposure is 10% to 25%; it has been estimated that this etiology is present in one out 6 adults with asthma96,99.

8.3.1. Types of occupational asthma

- Immunological OA: induced by sensitization to specific agents which are present in the workplace, through a mechanism associated with a specific immunological response86. High molecular weight (HMW) agents (proteins or glycopeptides > 10 kDa) causing production of specific IgE and the typical allergic response are the most common. Low weight molecular (LMW) agents are chemical products causing asthma through an unclear mechanisms suggesting sensitization. OA induced by high molecular weight compounds is associated with rhinitis and conjunctivitis and characterized by an earlier reaction, whereas OA induced by low molecular weight agents presents higher bronchial hyperreactivity and more severe clinical manifestations100,101.
- Non-immunological: induced by irritants in the absence of sensitization102. The reactive airways dysfunction
syndrome (RADS)103 is the most representative form of this type of asthma. The term irritant-induced asthma is currently used, which includes cases of asthma occurring after one or more exposures to high concentration levels104.

8.3.2 Risk factors

- Exposure levels: the higher the level, the greater the risk of developing asthma caused by both HMW or LMW agents105,106.
- Atopy: particularly in those exposed to HMW agents107.
- Rhinitis: often accompanying or preceding asthma produced by HMW97,108.
- Tobacco: an association may exist with the development of asthma caused by HMW and LMW agents, which act through an IgE-mediated mechanism109.

8.3.3 Diagnosis

The diagnosis of asthma and its relationship with the patient’s workplace should be confirmed102. Diagnostic tests are shown in Table 8.2 and the diagnostic algorithm is summarized in Figure 8.2. Methacholine challenge test has a high negative predictive value for the diagnosis of OA due to its high sensitivity (87.95%), in particular, if the patient has been recently exposed, but the specificity is low (36-40%)114,115.

Bronchial provocation test by the specific agent is the most accepted diagnostic confirmation test116.

8.3.4. Treatment

Patients with OA caused by sensitizing agents should be removed from the source of exposure112. Workers with irritant-induced asthma may continue to work provided they are transferred to lower exposure areas together with the implementation of industrial hygienic measures to reduce exposure.

In approximately 70% of patients, asthma symptoms and BHR persist for several years after being removed from the site of exposure96.

Table 8.1. Causative agents of occupational asthma96,97

<table>
<thead>
<tr>
<th>Class</th>
<th>Agent</th>
<th>Jobs/activities at risk of exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>High molecular weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animals</td>
<td>Mites, rats, crustaceans, mammal dander, etc.</td>
<td>Laboratory workers, farmers, veterinarians, seafood processors</td>
</tr>
<tr>
<td>Cereals and flours</td>
<td>Cereal powders, wheat, barley, oats, corn</td>
<td>Bakery, baker’s shop, pastry-making, beer industry</td>
</tr>
<tr>
<td>Enzymes</td>
<td>Amylase, alcalase</td>
<td>Pharmaceutical companies, baker’s shops</td>
</tr>
<tr>
<td>Latex</td>
<td>Latex</td>
<td>Healthcare personnel</td>
</tr>
<tr>
<td>Low molecular weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diisocyanates</td>
<td>Toluene diisocyanate (TDI), methylene diisocyanate (MDI) and hexamethylene diisocyanate (HDI)</td>
<td>Polyurethane foams, varnish, plastics, insulators, gun spray painting</td>
</tr>
<tr>
<td>Acid anhydrides</td>
<td>Phthalic acid, trimellitic acid, maleic anhydride, trimellitic anhydride</td>
<td>Resins and plastics, chemical and adhesive industries</td>
</tr>
<tr>
<td>Metals</td>
<td>Nickel, platinum, cobalt, chrome, stainless steel salts</td>
<td>Platinum refinery, polishers, grinding, tanners</td>
</tr>
<tr>
<td></td>
<td>Glutaraldehyde and chlorhexidine</td>
<td>Sanitary ware</td>
</tr>
<tr>
<td></td>
<td>Red cedar and tropical wood</td>
<td>Carpenter, electronic welding</td>
</tr>
<tr>
<td>Biocides</td>
<td>Penicillin, spiramycin, tetracycline</td>
<td>Pharmaceutical industry</td>
</tr>
<tr>
<td>Woods</td>
<td>Nickel, platinum, cobalt, chrome, stainless steel salts</td>
<td>Platinum refinery, polishers, grinding, tanners</td>
</tr>
<tr>
<td>Antibiotics</td>
<td>Glutaraldehyde and chlorhexidine</td>
<td>Sanitary ware</td>
</tr>
</tbody>
</table>

Irritants

<table>
<thead>
<tr>
<th>Class</th>
<th>Agent</th>
<th>Jobs/activities at risk of exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bleach/hydrogen chloride</td>
<td>Chlorine, ammonia, CIH</td>
<td>Cleaning</td>
</tr>
<tr>
<td>Smokes</td>
<td>Smokes</td>
<td>Firefighters</td>
</tr>
<tr>
<td>Gases</td>
<td>NO\textsubscript{2}, SO\textsubscript{2}, ozone</td>
<td>Metallurgy, agriculture</td>
</tr>
<tr>
<td>Other</td>
<td>Resin, acetic acid, caustic soda</td>
<td>Sanitary ware, chemical industry</td>
</tr>
</tbody>
</table>

NSAID: non-steroidal anti-inflammatory; ACE: angiotensin-converting enzyme, CT: computed tomography; MR: magnetic resonance; PPI: proton pump inhibitors; BMI: body mass index; CPAP: continuous positive airway pressure.
8.4. Physical exercise-induced asthma

Exercised-induced asthma is defined as a narrowing of the lower airways that is triggered by strenuous physical exercise\(^{117}\). Exercise-induced bronchoconstriction is more frequent among patients diagnosed with asthma, but may be also present in non-asthmatic subjects\(^{118,119}\).

Exercise-induced asthma is more common in patients with poorly controlled asthma\(^{120,121}\).

Exercise-induced asthma is caused by the increased osmolarity at the airway surface due to cooling and dehydration following hyperventilation\(^{122}\). It is associated with the release of mediators, such as prostaglandins, leukotrienes and histamine. Exercise-induced asthma may be the expression of a genetic predisposition and interaction with environmental pollutants, as well as of the resulting oxidative stress\(^{123}\), among other factors.

The prevalence is higher in athletes, children and adolescents, females, urban environments, and among Afro-Americans and Asians\(^{124,125}\).

Symptoms (cough and dyspnea with wheezing) usually occur during or following exercise, with a 2-3 hour-refractory period after their onset\(^{126}\).

Self-reported symptoms are unreliable for diagnosis. The diagnostic test is the finding of a FEV\(_1\) decrease over 10% measured 30 minutes after cessation of exercise and compared with the previous FEV\(_1\) values\(^{127}\).

Differential diagnosis with laryngeal and glottic disorders should be made as well as with other conditions associated with exercise-induced breathlessness, such as COPD, restrictive pulmonary diseases, obesity, anatomical defects, diaphragmatic paralysis or pulmonary fibrosis\(^{128}\).

It is necessary to evaluate the degree of control of asthma and to consider the possibility of increasing a therapeutic step.

Occasional use of short-acting \(\beta_2\)-agonists (SABA) approximately 10 minutes before exercise\(^{113}\) is the treatment of choice. However, when used regularly, these agents gradually lose effectiveness\(^{129,130}\).

IGC should be added when a continuous treatment with SABA is needed, since this combination reduces both the frequency and intensity of exacerbations\(^{131}\).

LTRA is a therapeutic option as they have a similar efficacy to LABA for preventing exercise-induced bronchial obstruction but are not effective to reverse an established obstruction\(^{132}\).

Increasingly intense warm-up exercise before starting any sports activity may attenuate the intensity of bronchoconstriction\(^{133,134}\).

Reduction of dietary sodium intake and supplementation with ascorbic acid or fish oil may diminish the severity of exacerbations\(^{135}\).

8.5. Aspirin-exacerbated respiratory disease (AERD)

AERD or respiratory disease exacerbated by non-steroidal anti-inflammatory drugs (NSAIDs) refers to acute development of nasal and/or bronchial respiratory symptoms of any intensity between 30 minutes and 3 hours after the administration of acetylsalicylic acid (ASA) or other cyclooxygenase-1 (COX-1) inhibiting NSAIDs\(^{136}\). It can be associated with cutaneous symptoms and hypotension, although this occurs rarely. The prevalence of AERD in the general population is of 0.3-2.5% but increases to 9% in subjects with asthma and is higher than 20% in patients with severe asthma\(^{137}\). In patients with concomitant asthma, chronic rhinosinusitis (CRS) and nasal polyposis (NP), the prevalence reaches 40%-50%\(^{138}\). Avoidance of NSAID does not resolve asthma or NP.

There is a mechanism of non-IgE-mediated hypersensitivity with dysregulation of the arachidonic acid pathway by 5-LT-C4-synthase followed by overproduction of cysteinyl-leukotrienes (LT-C4, LT-D4, LT-E4) and a reduction of PG-E2\(^{139}\). There is inflammation of the mucosa with activated eosinophils and...
mast cells (in which the enzyme is overexpressed), basophils and abundant platelets. Blockage of COX-1 by NSAID contributes to formation and release of T lymphocytes, and to the release of preformed mediators (PGD_2, histamine and tryptase). Mucous secretion, vascular permeability and bronchoconstriction are rapidly increased. IL-C2 cells of innate immune response are also involved producing type T2 cytokines.

8.5.1. Diagnosis

AERD should be suspected in any subject with asthma, with or without CRS and NP, and confirmed through a detailed clinical history showing a relationship between ingestion of a NSAID and the appearance of respiratory symptoms. At the present time, sufficiently validated in vitro diagnostic tests are lacking. The use of E4 leukotriene concentration in urine (uLTE4) together with clinical findings, slightly improves the diagnostic prediction. The diagnosis is confirmed by means of controlled exposure challenge with a NSAID, preferably ASA. The administration route may be oral, bronchial (inhaled) or nasal. These latter two routes are safer, although negative results do not exclude diagnosis; in this case, the result must be confirmed by using the oral route, which is the definitive diagnostic test to confirm or exclude AERD.

8.5.2. Treatment

The medical-surgical treatment of underlying diseases should be considered. Improvement in patients with moderate or severe asthma after adding LTRAs to the standard treatment has been reported. In addition, the administration of biologic drugs can be useful in the treatment of patients with AERD.
Table 8.3. Classification of some NSAIDs based on their capacity of inhibition of cyclooxygenase isoforms

<table>
<thead>
<tr>
<th>Potent COX-1 and COX-2 inhibitors</th>
<th>Acetylsalicylic acid, diclofenac, ibuprofen, metamizol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weak COX-1 and COX-2 inhibitors</td>
<td>Paracetamol</td>
</tr>
<tr>
<td>COX-2 inhibitors</td>
<td></td>
</tr>
<tr>
<td>• Partially selective (dose-dependent COX-1 inhibition)</td>
<td>Meloxicam, nabumetone</td>
</tr>
<tr>
<td>• Highly selective</td>
<td>Celecoxib, etoricoxib, parecoxib</td>
</tr>
</tbody>
</table>

8.6. Inducible laryngeal obstruction

The ERS/ELS/ACCP working Group has defined inducible laryngeal obstruction (ILO), formerly known as vocal cord dysfunction, as a condition that causes sudden respiratory difficulty secondary to an obstruction of the airway at the level of the glottic or supraglottic larynx. These attacks are characterized by the presence of dyspnea, stridor of laryngeal origin and other symptoms such as cough, pharyngeal globe or dysphonia.

The term inducible refers to the mechanism by which the obstruction crisis is triggered, which can include physical exercise or the presence of external (odors, chemicals) or internal (gastroesophageal reflux) irritants.

Its presentation may suggest an asthma exacerbation episode, as well as other laryngeal diseases such as paralysis or dystonia. Its association with asthma is possible, which makes the diagnosis difficult. ILO is seen in about 25% of individuals with asthma, with a trend towards a higher frequency in severe asthma.

Clinical suspicion is essential for the diagnosis of ILO. There are questionnaires that can help to distinguish between asthma and ILO. Flattening of the inspiratory portion of the flow-volume loop is of little value in the diagnosis of ILO, but may be suggestive. The confirmatory diagnosis is made by laryngeal videomicroscopy, which shows paradoxical adduction of the larynx during inspiration, or less frequently, during expiration. Usually requires a challenge test with exercise or inhalation of mannitol or methacholine.

The use of dynamic computerized tomography (CT) to demonstrate paradoxical laryngeal closure during attacks has been recently proposed.

In the acute phase of ILO, respiratory techniques may be useful for controlling inspiratory flow. Mild sedatives (ketamine, benzodiazepines) have shown to be useful, as well as inhaling a mixture of helium and oxygen (Heliox) or non-invasive ventilation.

Long-term treatment aims to reduce the intensity and frequency of attacks. The first step includes logopneotropic rehabilitation focused on breathing techniques and relaxation of the laryngeal muscles.
Table 8.4. Possible pharmacological interactions between drugs used in the treatment of COVID-19 and medications for asthma (based on those proposed by the “Grupo Neumo SEFH 2020”)

<table>
<thead>
<tr>
<th>Group</th>
<th>Drug</th>
<th>Lopinavir/ritonavir (LPV/RTV)</th>
<th>Hydroxichloroquine</th>
<th>Azithromycin</th>
<th>Tocilizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhaled (\beta)-adrenergic agonists</td>
<td>Formoterol</td>
<td>↑ QT(^{1,2,3}) + ↑ [formoterol]</td>
<td>↑ QT(^{1,2,3})</td>
<td>↑ QT(^{1,2,3})</td>
<td>←→</td>
</tr>
<tr>
<td></td>
<td>Indacaterol</td>
<td>↑ QT(^{1,2,3}) + ↑ [indacaterol]</td>
<td>↑ QT(^{1,2,3})</td>
<td>↑ QT(^{1,2,3})</td>
<td>←→</td>
</tr>
<tr>
<td></td>
<td>Olodaterol</td>
<td>↑ QT(^{1,2,3}) + ↑ [olodaterol]</td>
<td>↑ QT(^{1,2,3})</td>
<td>↑ QT(^{1,2,3})</td>
<td>←→</td>
</tr>
<tr>
<td></td>
<td>Salbutamol</td>
<td>↑ QT(^{1,2})</td>
<td>↑ QT(^{1,2})</td>
<td>↑ QT(^{1,2})</td>
<td>←→</td>
</tr>
<tr>
<td></td>
<td>Salmeterol</td>
<td>↑ QT(^{1,2,3}) + ↑ [salmeterol]</td>
<td>↑ QT(^{1,2,3})</td>
<td>↑ QT(^{1,2,3})</td>
<td>←→</td>
</tr>
<tr>
<td></td>
<td>Terbutaline</td>
<td>↑ QT(^{1,2,3}) + ↑ [terbutaline]</td>
<td>↑ QT(^{1,2,3})</td>
<td>↑ QT(^{1,2,3})</td>
<td>←→</td>
</tr>
<tr>
<td></td>
<td>Vilanterol</td>
<td>↑ QT(^{1,2,3}) + ↑ [vilanterol]</td>
<td>↑ QT(^{1,2,3})</td>
<td>↑ QT(^{1,2,3})</td>
<td>←→</td>
</tr>
<tr>
<td>Inhaled anticholinergics</td>
<td>Ipratropium</td>
<td>←→</td>
<td>←→</td>
<td>←→</td>
<td>←→</td>
</tr>
<tr>
<td></td>
<td>Tiotropium</td>
<td>↑ [tiotropium]</td>
<td>←→</td>
<td>←→</td>
<td>←→</td>
</tr>
<tr>
<td>Inhaled glucocorticoids</td>
<td>Beclomethasone</td>
<td>↑ [beclomethasone] + ↑ [LPV/RTV]</td>
<td>↑ AE(^{3})</td>
<td>←→</td>
<td>↑ AE(^{3})</td>
</tr>
<tr>
<td></td>
<td>Budesonide</td>
<td>↑ [budesonide] + ↑ QT(^{1}) + [LPV/RTV]</td>
<td>↑ AE(^{3})</td>
<td>←→</td>
<td>↑ AE(^{3})</td>
</tr>
<tr>
<td></td>
<td>Ciclesonide</td>
<td>↑ [ciclesonide]</td>
<td>↑ AE(^{3})</td>
<td>←→</td>
<td>↑ AE(^{3})</td>
</tr>
<tr>
<td></td>
<td>Fluticasone</td>
<td>↑ [fluticasone propionate]</td>
<td>↑ AE(^{3})</td>
<td>←→</td>
<td>↑ AE(^{3})</td>
</tr>
<tr>
<td></td>
<td>Mometasone</td>
<td>↑ [mometasone] + ↑ [LPV/RTV]</td>
<td>↑ AE(^{3})</td>
<td>←→</td>
<td>↑ AE(^{3})</td>
</tr>
<tr>
<td>Systemic glucocorticoids</td>
<td>Dexamethasone</td>
<td>↑ [dexamethasone] + ↑ [LPV/RTV]</td>
<td>↑ AE(^{3})</td>
<td>←→</td>
<td>↑ AE(^{3})</td>
</tr>
<tr>
<td></td>
<td>Hydrocortisone</td>
<td>↑ [hydrocortisone] + ↑ [LPV/RTV]</td>
<td>↑ AE(^{3})</td>
<td>←→</td>
<td>↑ AE(^{3})</td>
</tr>
<tr>
<td></td>
<td>Methylprednisolone</td>
<td>↑ [methylprednisolone] + ↑ [LPV/RTV]</td>
<td>↑ AE(^{3})</td>
<td>←→</td>
<td>↑ AE(^{3})</td>
</tr>
<tr>
<td></td>
<td>Prednisone</td>
<td>↑ [prednisone] + ↑ [LPV/RTV]</td>
<td>↑ AE(^{3})</td>
<td>←→</td>
<td>↑ AE(^{3})</td>
</tr>
<tr>
<td>Biologics</td>
<td>Benralizumab</td>
<td>←→</td>
<td>↑ AE(^{3,8})</td>
<td>←→</td>
<td>↑ AE(^{3})</td>
</tr>
<tr>
<td></td>
<td>Mepolizumab</td>
<td>←→</td>
<td>↑ AE(^{3,8})</td>
<td>←→</td>
<td>↑ AE(^{3})</td>
</tr>
<tr>
<td></td>
<td>Omalizumab</td>
<td>←→</td>
<td>↑ AE(^{3,8})</td>
<td>←→</td>
<td>↑ AE(^{3})</td>
</tr>
<tr>
<td></td>
<td>Reslizumab</td>
<td>←→</td>
<td>↑ AE(^{3,8})</td>
<td>←→</td>
<td>↑ AE(^{3})</td>
</tr>
<tr>
<td>Other drugs</td>
<td>Montelukast</td>
<td>↑ [montelukast]</td>
<td>↑ QT(^{3}) + ↑ [montelukast]</td>
<td>↑ [montelukast]</td>
<td>↓ [montelukast]</td>
</tr>
<tr>
<td></td>
<td>Azithromycin</td>
<td>↑ QT(^{3}) + ↑ [Azithromycin]</td>
<td>↑ QT(^{3})</td>
<td>↑ QT(^{3})</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

1. ↑[x]: increases X drug concentration; ↓[x]: decreases X drug concentration; ←→: no changes; ↑ AE: increase adverse effects; ↑ QT: QT prolongation.
2. Variable severity according to the reference source. Possible greater severity of formoterol or salmeterol with LPV/RTV. 2. Precaution. Higher risk when higher dose of bronchodilator. 3. Assess preferential use of salbutamol in acute symptoms (probable less serious adverse effects and lower t\(^{1/2}\)). 4. Beclomethasone has CYP3A4 hepatic metabolism. The administration of other inhaled glucocorticoids which are potent inhibitors of CYP3A4 increases significantly the exposure to the glucocorticoid agent. 5. Limited data. Potential increase of the risk or severity of adverse effects. 6. Precaution. Monitoring possible adverse effects. Risk of adrenal insufficiency on withdrawal. 7. Possible higher risk of adverse effects with hydroxychloroquine when using omalizumab. Due to the lack of data, this precaution is extended to the remaining biologics. 8. An in vitro study showed hydroxychloroquine may favor apoptosis of eosinophils. 9. Limited data. Potential increase of the risk or severity of adverse effects. Tocilizumab may have a higher risk or severity of adverse effects with any of the four biologics according to a consulted source.

NOTE: Remdesivir is not included in the list due to the lack of sufficient information.

Severity

<table>
<thead>
<tr>
<th>Color code</th>
<th>Without relevant interaction</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Without relevant interaction</td>
<td>In general, no additional precaution is needed</td>
<td>Can require monitoring and assessing dose adjustment or withdrawal</td>
<td>Contraindicated or assess risk-benefit</td>
</tr>
</tbody>
</table>
8.7. Asthma and the coronavirus disease 2019 (COVID-19)

The new COVID-19 is caused by the virus SARS-CoV-2. This airborne infection has high transmissibility and within a few weeks from the outbreak in Wuhan (Hubei, central China) in December 19, it became a serious pandemic and rapidly spread throughout the globe. The disease has a broad clinical spectrum from mild forms with a few (or asymptomatic) manifestations, to influenza-like symptoms (fever, cough, myalgia, asthenia) and severe forms with bilateral pulmonary infiltrates and severe acute respiratory failure (5-20%) causing death (2.3-3.8%). The disease is less common in children, with usually milder clinical manifestations, although infants may be more vulnerable. The evidence available at the time of writing the present guideline (March 2020), based on case series studies from the epidemic in China, shows that suffering from asthma or allergy does not seem to be independently associated (in multivariate analyses after adjusting for confounding variables) to a higher probability of developing or dying from COVID-19.

A study carried out in a reduced sample of cases showed that patients with allergic disorders infected by SARS-CoV-2 presented symptoms and a clinical course similar to those of non-allergic patients. Pulmonary function tests and induced sputum testing should be not be performed in order to prevent the spread of COVID-19 disease.

In the treatment of patients with asthma infected by SARS-CoV-2, neither nebulizers to deliver aerosolized medications (but rather devices coupled to spacer or inhalation chambers) should be used, nor non-invasive single-arm ventilators without bacterial filter in the outlet port.

There is no evidence of the deleterious effect of maintenance treatments for asthma, particularly IGC, on the prognosis of COVID-19. Therefore, patients should continue to take previously prescribed medications for their asthma. Systemic glucocorticoids should even be administered in case of exacerbations.

However, although the information available is limited, there may be some pharmacological interactions between some drugs used for treating COVID-19 and medications for asthma (Table 8.4). Very close clinical monitoring is recommended when administering these drugs and, in some cases, dose adjustments up or down may be considered (Table 8.4).

There is no evidence or clinical experience regarding safety of the use of biologics for the treatment of patients with uncontrolled severe asthma and SARS-CoV-2 infection. For this reason, and until having information available, it is recommended to individualize each case and to consider the convenience of spacing some doses based on the physician’s clinical judgement.
RECOMMENDATIONS

8.1. The diagnosis of ACOS will be establish in patients with persistent chronic airflow limitation, current smokers or ex-smokers, with documented diagnosis of asthma, or in whom there is a very positive bronchodilation test or eosinophilia.

8.2. All patients with ACOS will be initially treated with a combination of IGC and LABA.

8.3. In patients with ACOS treated with a combination of IGC and LABA who remain symptomatic or with exacerbations, a LAMA will be added.

8.4. Drugs usually administered, LABA plus IGC, are recommended for the maintenance treatment of asthma in pregnant women.

8.5. In the treatment of exacerbations in pregnant women the same algorithms than in non-pregnant women should be followed, ensuring adequate oxygenation (SaO₂ > 95%) and monitoring of the fetus.

8.6. In order to reduce the risk of maternal and fetal complications, pregnant women with asthma should be adequately controlled for preventing severe exacerbations.

8.7. In adult-onset asthma or if there is a deterioration of previous asthma, it is recommended to exclude occupational asthma.

8.8. The diagnosis of occupational asthma should be confirmed by objective tests, and in cases of allergic etiopathogenesis, by immunological tests.

8.9. The specific challenge test is the reference diagnostic test for immunological occupational asthma.

8.10. In the treatment of immunological occupational asthma, removal of exposure to the causative agent is recommended.

8.11. In exercise-induced asthma, warm-up exercises before starting any sports activity are recommended.

8.12. In exercise-induced asthma, SABA used occasionally are the most effective short-term treatment.

8.13. In exercise-induced asthma, IGC reduce the frequency and intensity of symptoms, so that its use is advisable in patients usually treated with SABA.

8.14. In exercise-induced asthma, LTRA is a therapeutic option less effective than IGC for preventing bronchoconstriction and is not useful to reverse an already established obstruction.

8.15. It is recommended to evaluate the degree of control to determine the need for increasing a therapeutic step in known asthma patients with exercise-induced asthma.

8.16. In patients with con asthma and chronic rhinosinusitis with nasal polyps, it is advisable to exclude aspirin-exacerbated respiratory disease (AERD), particularly in case of severe asthma.

8.17. Patients with AERD should avoid receiving treatment with any NSAID or COX-1 Inhibitors.

8.18. In the analgesic or anti-inflammatory treatment of patients with AERD, an alternative medication of choice (opiates, systemic corticosteroids) should be used. After demonstrating their tolerability, paracetamol at doses lower than 500 mg and selective COX-2 inhibitors (celecoxib, etoricoxib, parecoxib) can be used.

8.19. In patients with moderate or severe asthma and AERD, adding LTRA should be considered.

8.20. Desensitization with acetylsalicylic acid may be useful in selected cases.

8.21. Biologic drugs can be used in patients with severe uncontrolled asthma and AERD, especially in the presence of concomitant nasal polypsis.

8.22. The diagnosis of inducible laryngeal obstruction (ILO), formerly known as vocal cord dysfunction, should be established after clinical suspicion and confirmation by laryngeal videolaryngoscopy.

8.23. Treatment of the acute phase of ILO should include respiratory logaphoniatric reeducation (laryngeal muscle relaxation) techniques.

8.24. In the treatment of the acute phase of ILO, sedatives may be useful, whereas type A botulinum toxin or surgery are reserved for refractory cases.

148. Dahlén SE, Malmstrom K, Nizankowska E. Improvement of aspirin-intolerant asthma by montelukast, a leukotriene

