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 Abstract

Regulatory B (Breg) cells are recognized as immunosuppressive cells. During the last few years, several subsets of Breg cells with different 
phenotypes and suppressive mechanisms have been described in the literature. We review the role of Breg cells in allergy based on an 
extensive literature search in PubMed.
We describe the types and mechanisms of action of B cells and their role in the pathogenesis of several allergic diseases (allergic asthma, 
allergic rhinitis, food allergy, contact hypersensitivity, and anaphylaxis).
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 Resumen

Los linfocitos reguladores del tipo B (B reg.) juegan un papel importante en el funcionamiento del sistema inmunitario. Durante los últimos 
años, se han descrito varios subgrupos de linfocitos B reg., con diferentes fenotipos y mecanismos supresores. Nuestro objetivo es recopilar 
la información existente sobre el papel de los linfocitos B reg. en Alergología, en base a una profunda investigación bibliográfica en PubMed.
Describimos los tipos y mecanismos de acción de los linfocitos B y su función en la patogénesis de varias enfermedades alérgicas (asma 
alérgica, rinitis alérgica, alergia alimentaria, eccema de contacto y anafilaxia).
Palabras clave: Linfocitos B reguladores. Alergia. Enfermedad alérgica. Tolerancia a alérgenos. B10. Br1. Asma. Alergia alimentaria. Alergia 
al veneno de himenópteros. Embarazo.
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Introduction

Regulatory cells are essential for preserving immune 
homeostasis and self-tolerance. Research has focused primarily 
on the role of CD4+CD25+Foxp3+ regulatory T (Treg) cells, 
whose role in the pathogenesis of autoimmune and allergic 
diseases has been extensively studied, as has their role in the 
maintenance of tolerance to allergens [1-5]. Compared with 
T cells, or even with dendritic cells, the role of B cells in 
immune regulation has received little attention. 

Evidence supporting the regulatory function of B cells 
has been accumulated over the last 20 years, mainly in animal 
models. In 1996, compelling data in this field were reported 
by Wolf et al [6], who induced experimental autoimmune 

encephalomyelitis in genetically B cell–deficient mice. 
Afterwards, in 2002, using animal models of intestinal 
inflammation, Mizoguchi et al [7] demonstrated that a B-cell 
subset, CD1dhi, which produced interleukin-10 (IL-10), could 
suppress the progression of intestinal inflammation. At same 
time, Fillatreau et al [8] showed that IL-10 produced by B cells 
plays a key role in controlling autoimmunity. These studies 
have put forward the concept of a specific regulatory B cell 
(Breg) subset that produces IL-10. Lately, several other studies 
have reported a significant role for B cells in suppressing 
allergic and autoimmune responses.

This paper focuses on the role of Breg cells in allergy. We 
describe the types and mechanisms of action of B cells and their 
role in the pathogenesis of several allergic diseases (allergic 

205

Table. Historic Perspective and Phenotypic Characterization of Human and Mice Breg Cell Subsets (Adapted From van de Veen [12]) 

Model Date Phenotype (Designation)  Associations

Human 2008 C1dhi MS [57], CHB, CHC [58]
 2010-12 CD19+CD24hiCD38hi (immature cells) SLE, RA [34], CHB [59]
 2011 CD27+CD24hiCD148hiCD48hi (B10 cells) RA, SLE, SS, autoimmune vesiculobullous skin  
   disease, MS (higher levels than healthy controls) [60]
 2013 CD73-CD25+CD71+  Nonallergic beekeepers and patients receiving 
  (Br1 cells) allergen-specific immunotherapy (allergen tolerance) [47]
 2014 CD27intCD38+ (plasmablast) Healthy donors (regulatory role in autoimmune  
   inflammation) [61]
 2014 CD19+CD25+ MS [62]
 2015 CD5+CD24hiCD38hi ANCA-associated vasculitis [63]
 2013-15 CD19+CD24hiCD38hi ITP [64], pemphigus [65], RA [66], SS [67]

Mice 2002, 2013 IgMhiCD5+CD1dhi FasL+  Schistosoma mansoni infection [68, 69] 
  (killer B1a cells)
 2007-08 CD19+CD5+ (B1a cells) Neonatal acute inflammation [70], chronic colitis [71]
 2008-2015 CD19+CD1dhiCD5+ (B10 cells) Contact hypersensitivity [72], EAE [73], lupus [74],  
   EAMG [75], collagen-induced arthritis [76],  
   colitis [77], allergic airway inflammation [21, 24]
 2013 Tolerogenic CX3CR1+ B cells Food allergy–induced intestinal inflammation [46]
 2007, 2009, 2015 CD19+CD21hiCD23hi Experimental arthritis [78], lupus [79],  
  CD24hiIgMhiIgDhiCD1dhi  tolerance induction and allograft survival [80] 
  (transitional type 2 B cells)
 2009 B220+CD21+CD22+CD23+CD24+ EAE [81] 
  CD1d+CD138+IgD+IgM+ 
  (GIFT-15 B cells)
 2012 CD24hiIgMhiIgDloCD1dhi (MZ B cells) Leishmania donovani infection [82]
 2016 CD19+CD21hiCD23- (MZ precursor B cells) Allograft survival [83]
 2014-15 IgM+CD138hiTACI+CXCR4+ EAE, Salmonella enterica infection[84], tumors [85] 
  CD1dintTIM1int 
  CD138hiPD-L1+B220+IgA+ 
  (plasma cells) 
 2014 CD138+CD44hi (plasmablast) EAE [61]
 2014-16 IL-35+Breg (i35-Breg) EAE [84], EUA [86-88]

Abbreviations: ANCA, antineutrophil cytoplasmic autoantibody; CHB, chronic hepatitis B; CHC, chronic hepatitis C; EAE, experimental autoimmune 
encephalomyelitis; EAMG, experimental autoimmune myasthenia gravis; EAU, experimental autoimmune uveitis; GIFT15, granulocyte-macrophage 
colony-stimulating factor and interleukin-15 fusokine; ITP, immune thrombocytopenia; MS, multiple sclerosis; MZ, marginal zone; RA, rheumatoid 
arthritis; SLE, systemic lupus erythematosus; SS, Sjögren syndrome.
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asthma, allergic rhinitis, food allergy, contact hypersensitivity, 
and anaphylaxis). 

Breg Cells: Types and Mechanisms of 
Action and Their Role in Allergy

Several subsets of Breg cells with different phenotypes and 
suppressive mechanisms have been described in both mice 
and humans (Table). 

Murine Breg subsets, namely CD5+ B1a and CD5– B1a, 
are found mainly in the peritoneal and pleural cavities. 
B1a-like cells have been identified as a relevant source of 
IL-10. Furthermore, in mice, CD5+CD1dhi (B10) cells have 
been identified. These share some characteristics with B1a 
B cells and with other B-cell subsets. Other phenotypes of 
Breg resembling B2 B cells have been described. B2 cells 
can be divided into follicular B cells, which are found in the 
bloodstream and in secondary lymphoid tissues, and marginal 
zone (MZ) B cells. Follicular and MZ B cells originate in 
immature precursors in bone marrow called transitional 
B cells. In mice, both transitional MZ precursor B cells 
(CD19+ CD21hi CD23hi CD24hi IgMhiIgDhiCD1dhi) and MZ 
B cells (CD19+CD21hiCD23-CD24hiIgMhiIgDloCD1dhi) have 
been associated with IL-10–mediated immunoregulatory 
functions. Briefly, in mice, the several types of Breg cells 
described include transitional 2 MZ precursor (T2-MZP) cells, 
CD5+CD1dhi B (B10) cells, MZ B cells, CD138+ plasma cells, 
and plasmablasts [9]. Phenotypically, murine B10 cells secrete 
IL-10 and are characterized by expression of CD5 and CD1d. 
In fact, both B10 cells and splenic T2-MZP inhibit immune 
responses through the production of IL-10 [10].

In humans, several B-cell subsets have been described as 
having regulatory capacities. The 2 main populations identified 
are CD19+CD24hiCD38hiCD1dhi and CD19+CD24hiCD27+ 
Breg cells. The most common definition of Breg cells, however, 
includes cells with the phenotype CD19+CD38+CD24+ and 
intracellular IL-10 expression [11] in immature transitional 
B cells. Human Br1 cells are characterized by a CD73–

CD25+CD71+ phenotype and have been studied in the context 
of allergen tolerance induction [12]. Functionally, Br1 and B10 
cells are IL-10–producing Breg cells, and both nomenclatures 
are used in the literature. 

The “hygiene hypothesis” postulated by Strachan [13], 
states that the increasingly clean and sterile environment of 
modern life has promoted the development of many diseases, 
including asthma. Subsequent substantial evidence has 
supported this theory [14]. During the last few decades, lifestyle 
changes have transformed the nonharmful coexistence with our 
commensal microbiome, leading to a loss of opportunities to 
acquire microorganisms considered “microbial friends”. Some 
of these organisms have beneficial properties [15]. According 
to this hypothesis, the loss of exposure to microorganisms 
increases the prevalence of many diseases such as asthma [14].

Epidemiological studies have reported an inverse association 
between parasitic infections, which are extremely prevalent in 
developing countries, and allergic disorders [16,17]. Helminth 
infections induce strong TH2 responses and IgE production. 
The incidence of allergic disorders is lower in individuals 

infected by helminths than among noninfected individuals [17]. 
Moreover, Breg cell production might be induced by bacterial 
or parasitic infections [12].

Breg cells that are induced by helminths are typically from 
the CD5+CD1dhi B10 subset, and their effect is mostly mediated 
through secretion of IL-10 [12]. Additionally, other types of 
Bregs can be induced in helminth infection. The follicular 
CD19+CD23hi B-cell subset might also suppress inflammatory 
responses. Adoptive transfer of these cells strongly suppresses 
allergic airway inflammation in an ovalbumin-sensitized mice 
model [12].

An in vitro culture system showed that Schistosoma 
mansoni induces IL-10–producing CD1dhi Breg cells and 
that the transfer of this Breg subset suppresses allergic airway 
inflammation in ovalbumin-sensitized mice [17]. These 
findings suggest that helminthic infections have a direct impact 
on Breg cell function. 

Infection with S mansoni has been associated with high 
levels of IL-10– and TGF-β1–producing B cells that can 
inhibit the production of IL-4, IFN-γ, and IL-17 by T cells 
and mediate conversion of effector T cells into CD25hiFoxp3+ 
IL-10–producing Treg cells. Thus, helminth infections can 
contribute to an immunoregulatory environment and promote 
both dampening of TH1-, TH17,- and TH2-skewed diseases [12]. 
Infection with S mansoni proved to be protective in an 
experimental model of systemic anaphylaxis [18]. This effect 
was dependent on induction of IL-10–producing B cells, which 
increased 2-fold in S mansoni–infected mice and can protect 
against allergic hypersensitivity [18]. These data illustrate 
the delicate balance between protective regulatory (IL-10) 
responses mediated by parasite induction and harmful (IL-4) 
allergic responses [18].

Thus, the capacity of Breg cells to suppress allergic 
airway inflammation seems to depend on the expression 
of CD1d, particularly in mice, but also presents an IL-10–
dependent mechanism [7,19-21]. Studies performed by van der 
Vlugt [16,22] have shown that schistosomes induce regulatory 
responses in both human and mouse CD1dhi B cells and that 
they can restore allergic inflammation by production of IL-10. 
Compared with uninfected children, Schistosoma-infected 
children overexpressed CD1dhi B cells in peripheral blood, 
which in turn produced higher levels of IL-10 [16].

The recognition of microbial antigens through toll-like 
receptors (TLR) and the TLR signal mediator MyD88 induces 
B cells, which can suppress inflammation during microbial 
infection. Several animal and human studies have demonstrated 
the protective role of TLR activation (by parasites and other 
microbes) against allergy [23]. Infection with parasites 
promotes the development of Breg cells and protects from 
allergic inflammation [16,17]. Accordingly, animal models with 
B-cell–specific deficiency in both TLR2 and TLR4 developed a 
chronic form of experimental autoimmune encephalomyelitis, 
similar to chimeric models with IL-10–deficient B cells [23]. 
Microarray analysis of CD19+CD1dhi Breg cells from mice 
infected with S mansoni demonstrated increased expression 
of TLR7 [24]. The activation of the TLR7 pathway in 
CD19+CD1dhi B cells increases their capacity to produce IL-10. 
The adoptive transfer of TLR7-elicited CD19+CD1dhi B cells 
could reduce airway inflammation and was associated with 
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airway hyperresponsiveness. TLR7 stimulation leads to the 
expansion of IL-10–producing CD19+CD1dhi B cells, which 
can suppress allergic lung inflammation through induction of 
Treg cells [24]. 

Breg cells induce pulmonary infiltration of Treg cells 
independently of transforming growth factor (TGF)-β, leading 
to suppression of allergic airway inflammation [21]. Breg 
cells generated ex vivo also suppressed the development of 
allergic airway inflammation. Furthermore, the transfer of these 
regulatory B cells reversed established airway inflammation in 
sensitized mice [21]. Helminth-induced Breg cells were able 
to suppress TH2 cells and induce Treg cells, which further 
inhibited the TH2 response during allergic inflammation 
[21,25,26]. 

Specific immunotherapy has proven to induce allergen-
specific expansion of Breg cells, thus supporting their role in 
the establishment of allergen tolerance. The regulatory functions 
of B cells are not exclusively IL-10–dependent, and other 
regulatory mechanisms mediated by B cells include production 
of TGF-β, promotion of T-cell apoptosis by Fas–Fas ligand and 
granzyme-B pathways, and the capacity to produce inhibitory 
IgG4 and sialylated IgG, both of which are able to mediate 
anti-inflammatory mechanisms [3,23,26]. Therefore, Breg cells 
are regarded as interesting targets for the development of new 
therapies to induce allergen tolerance. 

Allergic Asthma

Animal studies have demonstrated that IL-10–producing B cells 
can modulate T-cell responses by induction of IL-10–producing 
T cells and Foxp3+ Treg cells [25, 27, 28]. The CD24hiCD27+ 
Breg subset is responsible for the induction of IL-10+ CD4+ T 
cells. Breg cell counts were significantly reduced in patients 
with allergic asthma, who also had a lower capacity to produce 
IL-10 in response to lipopolysaccharide. Besides the lower 
numbers of CD24hiCD27+ B cells, asthmatic patients also 
had lower IL-10 production by T- and B-cell coculture in 
response to house dust mite. This impaired regulatory activity, 
particularly that of CD24hiCD27+ B cells to induce IL-10+ T 
cells, supports the idea of a weakened Breg function in patients 
with allergic asthma [29]. 

Deeper analysis of the Breg phenotype has revealed that CD9 
is a specific marker for Breg cells in mice and humans [30,31]. 
In humans, the expression of CD9 is increased dramatically 
at the surface of CD24hiCD38hi immature B cells, which have 
been described as an important IL-10–secreting Breg subset 
able to control T-cell inflammation [32-34]. Recently, Braza 
et al [30] showed that this new regulatory B-cell subset, CD9+ 
Breg cells, inhibits house dust mite–induced allergic airway 
inflammation. Initially, the authors showed that the induction 
of allergic asthma alters the homeostasis of IL-10+ Breg cells, 
thus increasing production of inflammatory cytokines by B cells. 
The frequency of IL-10+ Breg cells was decreased in the spleen 
and lungs of asthmatic mice. Moreover, the adoptive transfer 
of CD9+ B cells normalized airway inflammation and lung 
function by inhibiting TH2- and TH17-driven inflammation in an 
IL-10–dependent manner, restoring a favorable immunological 
balance in lung tissues. Interestingly, the adoptive transfer 
of CD9+ Breg cells controlled the expansion of lung effector 

T cells, resulting in a higher local regulatory/effector T-cell 
ratio. Thus, CD9+ Breg cells may prevent the development 
of asthma by inhibiting allergic airway inflammation via 
IL-10–dependent mechanisms and likely contribute to 
induction of immunological tolerance in allergic airway 
inflammation.

Allergic Rhinitis

Recently, Kim et al [35] found that patients with allergic 
rhinitis had lower levels of Breg cells than nonallergic 
controls [35]. The authors revealed that individuals with allergic 
rhinitis had significantly fewer T follicular helper (TFH)–like 
cells (CD4+PD-1+CXCR5+) and their corresponding IL-21 
production than nonallergic individuals. The authors made 
the novel observation that Breg cells and TFH cells are 
both present in human lung lymph nodes. Considering that 
the production of Breg cells is influenced by TFH cells, the 
decrease in TFH-like cell counts in allergic rhinitis may 
contribute to the reduced numbers of Breg cells [35]. 

Food Allergy

In food-allergic patients, the inhibitory role of IL-10–producing 
CD5+ B cells has been described [19]. Interesting results showing 
the clinical relevance of B reg cells were recorded in studies on 
specific oral immunotherapy protocols in patients with cow’s milk 
allergy (CMA) [36].

However, another regulatory B-cell subset that produces 
TGF-β was recognized. These cells play essential roles in the 
induction of tolerance to non–IgE-mediated food allergy in 
atopic dermatitis [19]. TGF-β–producing Breg cells (Br3) 
were characterized in the allergic response to cow's milk [37]. 
Lee et al [37] performed a study with milk-allergic and 
milk-tolerant individuals who underwent in vitro casein 
stimulation and showed that Br3 proliferated in response to 
allergen stimulation in the milk-tolerant group, but not in the 
milk-allergic group. Hence, Br3 may be involved in allergy 
tolerance by negative regulation with TGF-β.

Noh et al [38] performed in vitro allergen (casein) 
stimulation of blood mononuclear cells from CMA patients 
and milk-tolerant individuals who had already outgrown 
CMA. Patients with CMA showed decreased levels of 
peripheral IL-10–producing regulatory B cells (Br1). In 
response to casein stimulation, Br1 decreased in the CMA 
group and increased significantly in the milk-tolerant group. 
Allergen stimulation in the milk-tolerant group induced 
proliferation of Br1, thus suggesting a role for these cells in 
allergen tolerance. On the other hand, counts of apoptotic 
non–IL-10–producing Breg cells increased in the milk-allergic 
group through allergen stimulation. Considering these results, 
Br1 cells appear to be involved in the acquisition of immune 
tolerance in patients with food allergies, probably through 
IL-10 production [38].

Whereas oral tolerance induced by ingestion of milk 
alone did not improve clinical outcomes, milk intake 
associated with IFN-γ injections completely suppressed 
the disease. Specific oral immunotherapy protocols with 
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IFN-γ have been associated with induction of tolerance in 
IgE-mediated food allergy [39,40] and in non–IgE-mediated 
food allergies [40]. IFN-γ is a representative TH1 cytokine, 
and TH1/TH2 imbalance is the critical immune mechanism of 
allergic diseases, including food allergy [41]. IFN-γ seems to 
contribute as an immunomodulatory agent with tolerogenic 
effects, ie, by increasing allergen-specific Br1 cells [41]. 
Immunotherapy with IFN-γ was first attempted to desensitize 
patients with atopic dermatitis against house dust mites [42] 
and subsequently applied in specific oral tolerance induction 
(SOTI) protocols for food allergy [36]. Patients receiving IFN-γ 
and milk had significantly higher proportions of Br1 cells 
after in vitro restimulation of peripheral blood mononuclear 
cells with casein [36]. Considering the total numbers, Br1 
cells decreased following allergen stimulation before SOTI 
protocols, but increased after [36].

In vitro stimulation of peripheral blood mononuclear 
cells from milk-allergic patients (non–IgE-mediated) and 
milk-tolerant individuals showed that Br1 responses were not 
induced by IFN-γ alone without casein stimulation but were 
induced when IFN-γ was simultaneously administered with 
casein [41].

Br3 cells demonstrated similar responses in non–IgE-
mediated food allergy and proliferated in response to allergen 
stimulation in milk-tolerant individuals [37]. 

Both Br1 and Br3 cells seem to be critical for inducing 
immune tolerance in non–IgE-mediated food allergy related 
to atopic dermatitis [19].

SOTI protocols were attempted using IFN-γ as an adjuvant 
in a study performed by Noh et al [39], which included 
25 patients with IgE-mediated anaphylactic food allergy to 
milk, egg, and wheat. IFN-γ–induced SOTI was conducted 
in 10 patients, while 5 patients were treated only with food, 
5 patients received only IFN-γ, and 5 patients did not receive 
any treatment. Tolerance was successfully induced in all 
patients with IFN-γ–induced SOTI, while no patients acquired 
tolerance in the control groups. Simultaneous allergen 
stimulation with nonspecific immunomodulation of IFN-γ 
was important to achieve specific tolerance in IgE-mediated 
anaphylactic food allergy [39].

Kim et al [43] demonstrated that mesenteric lymph 
node–derived IL-10–producing CD5+ B cells can suppress 
casein-induced allergic responses in a mouse model via 
induction of Foxp3+ regulatory T cells in an IL-10–dependent 
manner. IL-10–producing CD5+ B cells appear to be critical 
for promotion of the development of oral tolerance to casein. 
IL-10–producing CD5+ B cells were increased in mesenteric 
lymph nodes, but not in the spleen or peritoneal cavity in 
casein-tolerant mice. Interestingly, previous reports had already 
shown that oral tolerance cannot be induced in mice lacking 
mesenteric lymph nodes [44,45]. Moreover, the adoptive 
transfer of mesenteric CD5+ B cells from casein-tolerant mice 
suppressed allergic symptoms, thus highlighting the role of this 
subset in induction of tolerance. 

Tolerogenic B cells (CD5+CD19+CX3CR1+) comprise a 
specific population of Breg cells that is capable of inducing 
Treg cells in the intestine and suppressing food allergy–related 
TH2-mediated pattern of intestinal inflammation in mice [46].

Hymenoptera Venom Allergy

IL-10–producing regulatory B cells suppress immune 
responses through T cell–dependent mechanisms. Human 
IL-10+ Br1 cells, namely, those with the phenotype CD73–

CD25+CD71+ and which are known to produce high levels 
of IL-10, can potently suppress antigen-specific CD4+ T-cell 
proliferation [47]. In addition, IgG4 production appears to 
be selectively confined to human Br1 cells [47]. Concerning 
hymenoptera venom allergy, specific B cells for the major 
bee venom allergen phospholipase A2 (PLA) isolated from 
nonallergic beekeepers showed increased production of IL-10 
and IgG4. Furthermore, the frequency of IL-10+ PLA-specific 
B cells (Br1) increased in allergic patients receiving allergen-
specific immunotherapy, thus supporting the concept that 
Breg cells are important for the establishment of allergen 
tolerance [47]. 

A recent study provided a detailed characterization of 
the allergen-specific B-cell response before and during 
bee venom immunotherapy by comparing allergic patients 
with healthy beekeepers before and during the beekeeping 
season. The authors observed that exposure to a high dose of 
bee venom induces similar tolerogenic B-cell responses in 
allergic patients and healthy beekeepers. Both groups showed 
increased frequencies of plasmablasts, PLA-specific memory 
B cells, and IL-10–secreting CD73–CD25+CD71+ Br1 cells. 
PLA-specific IgG4-switched memory B cells expanded after 
exposure to bee venom. These findings suggested a similar 
functional immunoregulatory role for B cells in allergen 
tolerance in both groups [48].

Contact Hypersensitivity 

The lack, or loss, of Breg cells can exacerbate symptoms 
of contact hypersensitivity (CHS) [10,19]. B10 cells were 
regarded as regulators of inflammation in murine models 
of CHS [11,49], which is exacerbated in CD19-deficient 
mice. CD19 expression is critical, and CD19 loss resulted 
in increased and prolonged reaction of CHS, suggesting 
an inhibitory role of CD19 expression in CHS [50]. 
Yanaba et al [51] reported the existence of a B-cell subset 
characterized by the phenotype CD19hiCD1dhiCD5+, which 
is capable of suppressing experimental induced CHS in an 
antigen-restricted and IL-10–dependent manner [51,52]. 
Adoptive transfer of this specific B-cell subset, which is 
derived from sensitized animals, proved to be effective in 
reducing inflammation in recipients sensitized with the same 
chemical, but not with a different one. Apparently, these data 
expose an underlying specificity in the Breg cell response in 
CHS [51,52].

Pregnancy and Allergy

Pregnancy represents an unpredictable challenge 
to the immune system, requiring a critical balance to 
assume tolerance towards the fetus without compromising 
immunological competence. 
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A prospective observational study performed by 
Lima et al [53] reported that the absolute counts and 
percentages of most B-cell subsets were significantly lower in 
the third trimester of pregnancy and on the delivery day than 
in nonpregnant women. Moreover, the percentages of naïve 
B cells were significantly higher in the third trimester and on 
delivery day, and CD24hiCD38hi Breg cells were significantly 
higher in the postpartum [53]. These data support the idea 
that the peripheral B cell compartment undergoes quantitative 
changes during normal late pregnancy and postpartum.

T- and B-cell subsets are also modified in asthmatic 
pregnant women. Martins et al [54] reported that, in 
asthmatic pregnant women, CD24hiCD38hi Breg cells were 
decreased during pregnancy and increased significantly in 
the postpartum, as observed in healthy pregnant women. 
Similar levels of Treg cells were observed in both asthmatic 
and pregnant women, compared with nonpregnant women. 
However, Foxp3 expression in Treg cells was impaired 
during pregnancy in asthmatic and healthy pregnant women, 
recovering during the postpartum period. Although the 
reduction is more noticeable in healthy pregnant women 
than in asthmatics, both groups significantly downregulated 
Foxp3 expression in the third trimester of pregnancy 
compared with nonpregnant women. During the postpartum 
period, Foxp3 expression levels increased significantly in 
both groups. These results, which show similar patterns 
for Breg cells and Foxp3 expression within Treg cells, 
corroborate a close interaction between Treg and Breg cells 
in immune responses during pregnancy, which is also present 
in asthmatic patients.

Maternal exposure to an environment rich in microbial 
compounds might protect against the development of atopic 
sensitization [55]. It was demonstrated that in early life, 
immune cells preferentially produce IL-10 after stimulation 
with TLR ligands [56]. Accordingly, neonate mice exhibited 
higher levels of Breg cells than adult mice [51]. Lower 
TLR4-mediated IL-10 production might play a causal role 
in the development of atopic dermatitis in children [51]. 
Patients with allergic asthma showed reduced TLR4-induced 
IL-10 production by B10 cells when compared with healthy 
controls [29]. All these findings support a potential role for 
IL-10 Breg cells in the early control of allergic diseases. It is 
speculated that early exposure to pathogens can enhance the 
generation of Breg cells, which provide important protection 
against allergy, probably through the maintenance of Treg 
cells [16, 21, 23].

Conclusions 

There is strong evidence in favor of the prominent role 
of Breg cells in allergic inflammation. Moreover, human 
studies have found elevated levels of allergen-specific 
IL-10–producing Breg cells after immunotherapy, 
suggesting that Breg cells have a critical role in the 
induction of tolerance. However, further investigations—
mainly human studies—are needed to clarify the exact 
mechanisms and the influence of Breg cells.

Large cohort studies should be performed to evaluate the 
impact of Breg cells on the modulation of allergic diseases. 

The knowledge generated by such studies should be applied 
to develop targeted therapies for allergic disorders.
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