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 Abstract

Chronic rhinosinusitis (CRS) is an inflammatory disease of the nose and paranasal sinuses that is often associated with nasal polyposis 
(CRSwNP) in the most severe cases. As in other complex diseases, genetic factors are thought to play an important role in the risk and 
development of the disease. Environment may also modulate the epigenetic signature in affected patients. In the present systematic review, 
we aimed to compile all published data on genetic and epigenetic variations in CRSwNP since 2000. We found 104 articles, 24 of which 
were related to epigenetic studies. We identified more than 150 genetic variants in 99 genes involved in the pathogenesis of nasal polyposis. 
These were clustered into 8 main networks, linking genes involved in inflammation and immune response (eg, MHC), cytokine genes (eg, 
TNF), leukotriene metabolism, and the extracellular matrix. A total of 89 miRNAs were also identified; these are associated mainly with 
biological functions such as the cell cycle, inflammation, and the immune response. We propose a potential relationship between genes 
and the miRNAs identified that may open new lines of investigation. An in-depth knowledge of gene variants and epigenetic traits could 
help us to design more tailored treatment for patients with CRSwNP.
Key words: Nasal polyposis. Gene variants. Polymorphisms. Epigenetics. Chronic rhinosinusitis. Systematic review.

 Resumen

La rinosinusitis crónica (CRS) es una enfermedad inflamatoria de las fosas nasales y los senos paranasales que, en los casos más graves, 
suele estar asociada a poliposis nasosinusal (CRSwNP). Al igual que otras enfermedades complejas, los factores genéticos podrían contribuir 
de forma notable, tanto al riesgo de padecerla como a su desarrollo; por su parte, los factores ambientales modularían la huella epigenética 
de los pacientes. El objetivo de esta revisión sistemática es recopilar toda la información publicada desde 2000 hasta mayo de 2020 
sobre las variaciones genéticas y epigenéticas relacionadas con CRSwNP, extraída de un total de 104 artículos, 24 de ellos referentes a 
estudios epigenéticos. En estos artículos se han identificado más de 150 variantes genéticas en 99 genes implicados en la patogénesis de 
la CRSwNP, que se han agrupado en ocho redes funcionales principales, relacionadas con la inflamación, la respuesta inmune (incluyendo 
genes como MHC, TNF o genes de citocinas), el metabolismo de leucotrienos y con genes relacionados con la matriz extracelular. También 
se han identificado 89 miRNA asociados a funciones biológicas, como el ciclo celular, la inflamación y la respuesta inmune. Gracias al uso 
de herramientas bioinformáticas, se sugieren relaciones potenciales entre genes y miRNA relevantes para la enfermedad, lo que puede 
constituir nuevas líneas de investigación. Un conocimiento en profundidad de las variantes genéticas y las huellas epigenéticas de los 
pacientes con CRSwNP podría contribuir al diseño de tratamientos más personalizados y eficaces.
Palabras clave: Poliposis nasosinusal. Variantes genéticas. Polimorfismos. Epigenética. Rinosinusistis crónica. Revisión sistemática.
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Introduction

Chronic rhinosinusitis (CRS) is an inflammatory disease of 
the nose and paranasal sinuses defined by the presence of 2 or 
more symptoms, 1 of which should be either nasal blockage, 
obstruction, congestion, or nasal discharge, in combination 
with facial pain or pressure, and/or reduction in or loss of 
smell for at least 12 weeks [1,2]. Two primary forms are widely 
recognized, namely, CRS with nasal polyposis (NP) in the 
middle meatus (CRSwNP) and CRS without NP (CRSsNP). 
Eosinophilic CRS is a subtype of CRSwNP associated with 
severe eosinophilic infiltration in sinus tissue, which is more 
common in Western countries. In contrast, noneosinophilic 
CRSwNP, which is characterized by neutrophil-dominant 
inflammatory infiltration, is much more prevalent in Asian 
countries such as China, Korea, and Japan, although the 
prevalence of eosinophilic CRSwNP is rising [3]. 

The prevalence of CRSwNP in the general population 
is around 4%, with the disease being more likely in males 
than females [4]. Onset is primarily in adulthood, on average 
at around 42 years [3]. Based on the 22-item Sinonasal 
Outcome Test score, CRS has a negative impact on quality 
of life compared with controls (42.0 vs 9.3). An increase in 
health care expenditure has also been reported, with estimated 
annual direct costs per patient of $2609 in the US and 
€1861 in Europe. The indirect costs, ie, those derived from 
absenteeism and decreased productivity at work, are even 
greater, and CRS has been identified as one of the top 10 most 
costly health conditions for US employers (>$20 billion per 
year) [2].

CRSwNP is often associated with asthma (26%-48% of 
patients), and a subset of patients develop aspirin exacerbated 
respiratory disease (AERD), which negatively affects the 
course of CRSwNP [5]. 

Early studies have reported an unusually high prevalence 
of CRSwNP within some families, pointing towards a genetic 
component [6,7]. Given that CRSwNP is a complex disease, 
we expect a plethora of variants in multiple genes, but not in 
a single gene. Technical approaches such as genome-wide 
association studies may provide an extensive overview of the 
genes associated with the disease when performed in large 
cohorts of well-characterized patients and appropriate controls. 
However, since only a few such studies have been performed 
to date, current knowledge of the genetic basis of CRSwNP 
comes mainly from candidate gene approaches [8].

As the interface between genes and environment, 
epigenetic modifications may help us to understand the 
etiology of complex traits and diseases, such as CRS, 
leading to a more in-depth knowledge of the clinical and 
molecular factors involved [9], allowing for the identification 
of different clusters of patients in different geographical 
areas, and, therefore, enabling us to select the most effective 
therapeutic intervention [10]. Authors have undertaken this 
approach by focusing on the 3 main epigenetic mechanisms, 
ie, DNA methylation, histone modifications, and noncoding 
RNAs, mostly microRNAs (miRNAs). Thus, by investigating 
regulation of gene expression in both CRSwNP patients 
and controls it will be possible to identify disease-specific 
epigenetic markers. 

Considering the large amount of information published 
in the last 20 years, we aimed to clarify the field by 
systematically reviewing all articles on the genetics and 
epigenetics of NP.

Methods

This systematic review was performed using the PRISMA 
guidelines for Systematic Reviews and Meta-Analysis and 
2009 checklist and the GRADE recommendations [11]. 

We searched for original articles indexed from January 
2000 to May 2020 describing genetic or epigenetic aspects 
of NP. We identified eligible studies using the following 
inclusion criteria: (1) primary study or meta-analysis; 
(2) written in English, French, or Spanish; (3) human 
participants (both children and adults); (4) patients with 
CRSwNP; and (5) description of mutations, single-nucleotide 
polymorphisms (SNPs), genetic variants, or epigenetic 
modifications in association with disease onset, severity, 
or population prevalence. The exclusion criteria were as 
follows: (1) animal, histological, in vitro, or in silico studies; 
(2) review articles; (3) transcriptomic or expression analysis 
without epigenetic/genotyping analysis; (4) articles focused 
on other diseases, in which NP was merely mentioned; 
(5) studies about CRS without specific reference to NP or 
those in which the CRSwNP patients were not explicitly 
identified; and (6) articles whose full-text version was not 
available to us or that were written in other languages.

The literature search was performed between May and 
June 2020 in PubMed, the Cochrane Library, and Scopus 
databases using the following terms: “nasal polyps” or 
“chronic rhinosinusitis” or “CRSwNP” and “gene” or 
“genetic” or “mutation” or “epigenetic” or “DNA methylation” 
or “sequencing” or “microRNA” or “polymorphism” or 
“genome-wide association study” or “microarray” or “gene 
profiling”.

Three authors independently reviewed database search 
results, assessed titles, evaluated abstracts, and considered 
the study for full review. Any disagreements in either the title/
abstract or the full manuscript review phases were resolved 
by consensus. All eligible studies were formally evaluated and 
included in this systematic review.

The authors independently evaluated the quality appraisal 
and graded the risk of bias of the studies included. 

The risk of bias was assessed using Rob2, the tool 
recommended for this purpose in randomized trials included 
in Cochrane Reviews [12], albeit slightly modified to fit the 
nature of the articles selected. Studies were classified as having 
low, moderate, or high risk of bias.

Quality was assessed using the Newcastle-Ottawa scale 
(NOS) [13]. Each study was awarded 1 point per positive 
item, according to the scale. Scores over 6 were classified as 
“high quality”, those below 4 “low quality”, and the remainder 
“moderate”.

Gene pathway analysis of the genes found was performed 
using ShinyGO [14], FunRich 3.1.3 [15], and STRING [16]. 
miRNAs were analyzed using the online tool TAM2.0 [17] 
and miRSystem [18].
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Figure 1. Flow diagram of the selection process. NP indicates nasal 
polyposis.
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Results

Selection, Bias, and Quality of Articles

Our database search yielded 587 articles after removal 
of duplicates (Figure 1). After the title and abstract review, 
408 articles were excluded since they did not fulfill the 
eligibility criteria. Therefore, 179 articles qualified for full-
text review. Of those, we eliminated 22 studies that did not 
include any gene variant or polymorphism, 20 articles that 
considered CRS patients as a whole (without differentiating 
between those with and those without NP), 15 reviews, 16 
that analyzed other diseases (eg, asthma or cystic fibrosis), 
and merely mentioned NP concerning such diseases, and 2 
that were meeting abstracts.

Finally, 104 articles were evaluated. Of these, 24 were 
related to epigenetics, 70 were candidate gene studies, 9 were 
genome-wide association studies (GWAS), and 1 was based 
on a SNP array. 

A description of the 80 selected nonepigenetic studies is 
presented in Supplementary Table 1. Epigenetic articles are 
summarized in Supplementary Table 2.

We followed the Cochrane guidelines to assess the risk 
of bias of the studies selected using an adapted version of the 
Rob2 tool that fit the specific nature of the genetic analysis. 
Since our primary concern for bias referred to the lack of 
appropriate controls or techniques that were inappropriate for 
the intended aim, we responded to questions about intervention 
or randomization. Consequently, studies classified as being at 
high risk of bias were those in which healthy controls were 
missing or the methodology was not clearly explained in the 
text.

Under these conditions, 12.7% of the studies were 
considered at high risk of bias according to the algorithm 
(Figure 2A). The leading causes for qualifying a study as being 
at high risk included issues with the randomization process, ie, 
lack of healthy controls to compare with and poorly described 
methods. Two studies used public databases for information 
on the healthy population, thus raising concerns about the 
methodology applied to obtain these raw data. In summary, 
healthy controls were missing in 10 studies, and 1 article 
included human placenta as a control instead of nasal mucosa, 
which would be a more suitable tissue for comparison. 

Consistently, 84.1% of the articles were considered to be of 
high quality after running the NOS questionnaire (Figure 2B). 
Overall, adequate case definition and nonresponse rate were 
the better scored categories. Fourteen articles were considered 
to be of moderate quality, mainly due to failed selection and 
definition of relevant controls. Only 1 study scored below 4. 

Genetic Studies

A total of 99 genes and over 150 SNPs and genetic variants 
were identified as being related to NP in the selected articles 
and classified into those related to an increased risk of NP, 
those related to a reduced risk of NP, and those described as 
associated with the disease (Table 1). 

A preliminary study of functional categories and GO 
pathways was performed using the ShinyGO v0.61 tool 
(Figure 3). The main functional categories included the 
cytokine-mediated signaling pathway, defense response, 
inflammatory response, response to cytokines, and immune 
response (FDR<1.5e-13), while the top high-level GO 
categories were response to stress, regulation of response 
to stimulus, and immune system process (Supplementary 
Table 3).   

We also submitted the data for gene clustering using the 
STRING software. Figure 4 shows the results for the whole 
gene list cluster (Figure 4A), as well as clusters for those 
genes that increased the risk of NP (Figure 4B) and those that 
decreased the risk (Figure 4C). For purposes of clarity, those 
genes that failed to be connected were hidden. 

Eight clusters were identified in the general list of genes. 
The most highly populated was the brown cluster (1), which 
mainly included HLA genes. An enrichment study showed 
this cluster to be associated with the immune response (FDR 
3.67e-15), the cell surface receptor signaling pathway (FDR 
7.49e-15), immune system processes (FDR 1.92e-12), and 
antigen processing and presentation (FDR 9.05e-10). The red 
cluster (2), consisting of cytokines and related genes, was 
accordingly associated with the cytokine-mediated signaling 
pathway (FDR 4.19e-17) and also with the response to stress 
(FDR 5.75e-13) and immune system processes (FDR 1.92e-
12). The olive cluster (3) was related to the response to stress 
(FDR 5.75e-13) and, together with the turquoise cluster (4), 
to response to chemical stimulus (FDR 1.36e-11). The light 
green (5) and blue (6) clusters were involved mainly in signal 
transcription (FDR 1.42e-10), among other functions. Genes 
from the purple cluster (7) were implicated in general processes 
such as response to stimuli.

In the case of genes linked to the risk of developing disease, 
we decided to expand the network with the 5 most closely 
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Increase Risk SNP/Variant Decrease  
Risk

SNP/Variant Associated SNP/Variant

ACE [54] rs4309 
rs4293

ALOX15 [55] rs34210653 ADORA1 [64] rs16851030 
rs6664108

ADRB2 [69] rs1042713(A) AOAH [37,40] rs4504543 AGER [48] rs1800625
ANX4 [54] rs7588022 CD8A [27] rs3810831(C) ALOX5 [56] rs3780894
CACNG6 [37] rs192808 DCBLD2 [37] rs828618 ALOX5AP [56] 

ALOX15 [128]
rs17612127 
rs34210653

CCL11 [68,70] rs1490392522 (G) 
rs762429865 (5G)

EBI3 [136] rs428253 AOAH [73] rs4504543

CFTR [66] ΔF508 FANCC [22,54] rs1326188 BICD2 [21]
CIITA [110] rs12932187 HLA-B [22] *57 CACNA1I [73] rs3788568
COX2 [52] rs20417(A) 

rs20417 (C) 
HLA-Cw [22] *04 CAT [53] -21(TT)

FCER1A [65] rs2427827(T) HLA-DQA1 [24] *05012 CD14 [133] rs946564423 (C)
FCER1G [54] rs4489574 HLA-DQB1 [19,24] *0301 CYSLTR1 [56] rs321090
FOXP3 [136] rs2294018 

rs2232365
HLA-DQ [26] *07 CYP2S1 [55] rs338598

FS1P [54] rs502581  
rs2631700 
rs2631702

HLA-DR7 [24] DCBLD2 [124] rs828621 
rs1371687 
rs7615856 
rs828618 
rs8833

HLA-A [22] *24 
*33

HLA-DRB1 [22,25] *08 
*11

EMID [125] rs6945102 
rs4729697 
rs221  
rs10435333 
rs6947185 
rs4727494 
rs13233066 
rs1008064 
rs1543883 
rs13245946

HLA-B [22] *07 HLA-DRB3 [19]
HLA-Cw [22] *01 

*12
IL10 [54] rs1800872 

rs1554286
HLA-DQB1 [19,24] *0202 

*0302
IL1A [139] rs2856838 FOXP1 [55] rs17718444

HLA-D [26] *08 
*09

IL1B [37] rs16944 HLA-A74 [119]

HLA-DR [24,26] *09 
*07 
*16

IL4 [45] -590C/T HLA-DRA [21,23] rs9268644 
rs3129878 
rs3129881 
rs2239805

HLA-DRB1 [25] *03
*04

IRAK4 [37,40] rs4251431 
rs4251559 
rs4251513  
rs146567

HLA-DQA1 [55] rs1391371

HLCS [21]
HSP70-2 [48] rs1061581

Table 1. Genes and Corresponding Single-Nucleotide Polymorphisms (SNPs) Reported as Being Related to CRSwNP

(continued)
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Table 1. Genes and Corresponding Single-Nucleotide Polymorphisms (SNPs) Reported as Being Related to CRSwNP (continued)

(continued)

Increase Risk SNP/Variant Decrease  
Risk

SNP/Variant Associated SNP/Variant

HLA-DRB4 [19] NOS1 [135] rs9658281 
rs1483757

IL1RN [39] rs2234663

IL18R1 [55] rs6543124 
rs206976

IFNRD1 [111] rs7817 (T) PPARG [140] rs2960421 
rs4135275 
rs1875796

IL2 [39]

IL10 [37,54] rs1800870 
rs1800896 
rs3024498

P73 [129] rs3765731 (A) IL22RA1 [29] rs4292900 
rs4648936 
rs16829225

IL1A [28,35,37,38] 4845 (G/T) 
rs17561
rs1800587

RG7SBP [54] rs6870654  IL33 [55] rs1888909

IL1B [32,35,50] -511(C/T) TBXAS1 [54] rs13239058 
rs10487667 
rs6962291

IL4 [39] rs8179190

IL1RL1 [36,41] rs1420101
86-bp  
intron2  
rs13431828

TSLP [137] rs252706  
rs764917

IRAK4 [31] rs1461567
rs4251559

IL1RN [34] KIAA1456 [73] rs11779957
IL22 [29] rs4292900

rs4648936
rs16829225

LAMA2 [73] rs2571584

IL33 [37,41] rs3939286 (A) LAMB1 [73] rs4727695
IL4 [32,43] -590C>T (C) LTA [48] rs909253
KIFC3 [54] rs2285700 LTC4S [56,57] rs730012 (A)
LTF [138] rs1126478 MET [71]
LTC4S [57,58] rs730012 (C) MSRA [73] rs7001821
MET [52,71] rs78116323(G)

rs38850
MUSK [73] rs10817091

MMP2 [132] rs857403 MYRF [55] rs174535
MMP9 [37,131] rs3918242 

rs2274756
NAV3 [73] rs1726427

MS4A2 [54] rs573790 NOS1AP [135] rs12047527
OSF2 [138] -33C/G

rs3829365
NOS2 [53,57,126] -277(GG)

 CCTTT
PARS2 [115] rs2873551 

rs2270004
rs11577368
rs1180946 
rs1180945

PARS2 [73] rs2873551

PTGDR [57] -613 (C)
-549(C)
-441(C)
-197(C/T)

RYBP [37,40] rs4532099
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Table 1. Genes and Corresponding Single-Nucleotide Polymorphisms (SNPs) Reported as Being Related to CRSwNP (continued)

Increase Risk SNP/Variant Decrease  
Risk

SNP/Variant Associated SNP/Variant

RYD5 [122] rs113795008 
rs2280540 
rs2294083 
rs2294082

SERPINA1 [72] rs1243168
rs4900229

SLC5A1 [21]
SERPINA1 [40,72] rs1243168 (T) 

rs4900229
SLC22A4 [55] rs1050152

TAPBP [27] rs2282851(T) TAS2R13 rs1015443
TAS2R38 
[59,61,141]

rs713598 (C) 
rs1726866 (A)
rs10246939(C)

TAS2R20 rs12226920 
rs12226919

TNF 
[30,35,37,47,49-51]

rs1800629 (A) 
rs1799724 (C)

TRIP12 [73] rs10535833

TNF [48] rs1800629
TSLP [121] rs1837253 TSLP [55] rs1837253

VSIR [21]

linked genes to obtain a broader view of their functions. Five 
clusters were found for genes related to an increased risk of NP. 
The most highly populated corresponded to that including COX 
genes, which are mainly involved in aerobic electron transport 
chains (FDR 2.26e-08). A cytokine cluster was also identified. 
Three clusters were defined for genes associated with a reduced 
risk. One included the Fanconi anemia family (FAN), which 
could be implicated in DNA interstrand cross-link repair (FDR 
1.32e-15). The other 2 clusters—ILs and HLAs—have already 
been mentioned. It should be noted that some genes, eg, IL1A 
and IL10, have been related to both higher and lower risk of 
NP, depending on the SNP studied (Table 1). 

We further explored the influence on biological functions 
of the genes that increase the risk by comparing them with 
the protective genes using the FunRich software application 
(Figure 5). Thus, differences in gene enrichment were 
noticeable for cytokine signaling and activity, IL-1 signaling, 
and MHC receptor activity, suggesting that activation of these 
pathways and processes may be linked to a reduced risk of 
disease.  

Overview of Studies

Since the list of selected studies is extensive, we review 
them according to the clusters mentioned above in order to 
facilitate reading (Figure 4). 

1) Brown cluster: HLA genes

Eight articles were dedicated to analyzing the association 
between HLA gene variants and NP [19-26]. Most of the 
variants described increased the risk of NP, and some have been 
confirmed in 2 different populations, namely, DQA1*0201 in 
Hungarian [24] and Mexican [20] patients and HLA-DRB1*03 
and *04 in Turkish [22] and Mexican [25] patients. HLA-

DQB1*0301, on the other hand, was reported to be linked to 
a reduced risk of NP in both Hungarian [24] and Iranian [19] 
cohorts. 

Alromaih et al [27] studied the 2 related genes TAPBP and 
CD8, which are also included in this cluster, reporting that the 
minor allele C in CD8 rs3810831 would reduce the risk of NP, 
while the minor allele T in TAPBP rs2282851 would increase it.

2) Red cluster: IL and associated genes

Fourteen articles studied IL and related genes, although not 
all of them reported a significant association between the SNPs 
and the variants analyzed [28,29,38-41,30-37]. Thus, Erbek et 
al [35] and Mrowicka et al [32] found a positive correlation 
between IL1B –511C>T and NP, while others reported no 
association [34,38]. IL1B rs16944 was reported both as not 
associated [28] and associated with a reduced risk of NP [37]. 

The association has been shown to depend on the SNP. 
Thus, IL1A rs17561 [28,35,38,42], rs13431828 [40], and 
rs21800587 [28] have been associated with an increased risk 
of NP, while IL1A rs2856838 [28] was linked to a reduced risk. 

Tewfik et al [31] studied a wide range of IRAK4 SNPs, 
reporting that the C allele of rs1461567, the G allele of 
rs4251513, and the A allele of rs4251559 of the IRAK4 gene 
were associated with high serum levels of IgE in NP patients. 
Likewise, Zhang et al [40] found an association between IgE 
levels and rs4251513, and reported that rs4251431, rs6582484, 
rs1461567, and rs3794262 were linked to a reduced risk of NP.

Despite not being included in the red cluster, IL4 was 
linked to other ILs that increased the risk of NP (Figure 4B) 
[33,39,43]. However, published data are controversial since 
the same SNP (–590C>T) has been reported to increase the 
risk [44], reduce the risk [45], and even not to be associated 
with NP [46].
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Upregulated Downregulated

ENSG00000248810.1 [83] ENSG00000181123.4 [83]
ENSG00000253339.1 [83] ENSG00000250360.1 [83]
hsa-miR-125b [86] hsa-miR100-5p [84]
hsa-miR-125b-5p [84,89] hsa-miR106a-5p [84]
hsa-miR-1290 [89] hsa-miR-1226-3p [91]
hsa-miR-141-3p [84] hsa-miR-124 [85]
hsa-miR-142-3p [90] hsa-miR-125b-2-3p [84]
hsa-miR-150-5p [88,89] hsa-miR-125b-5p [84]
hsa-miR-193a-5p [84] hsa-miR-126-3p [84,89]
hsa-miR-19a [87] hsa-miR-1273h-3p [89]
hsa-miR-200a-3p [84] hsa-miR-1298-5p [91]
hsa-miR-200b-3p [84] hsa-miR-1299 [91]
hsa-miR-210-3p [89] hsa-miR-130a [84,94]
hsa-miR-210-5p [91] hsa-miR-130a-3p [89]
hsa-miR-30d-5p [84] hsa-miR-130b-3p [84]
hsa-miR-30e-5p [84] hsa-miR-138-5p [94]
hsa-miR-3146 [91] hsa-miR-139-5p [89]
hsa-miR-3178 [91] hsa-miR-143-3p [89]
hsa-miR-320e [91] hsa-miR-146a [92]
hsa-miR-342-3p [89] hsa-miR-152-3p [89]
hsa-miR-34b-3p [84] hsa-miR-16-5p [89]
hsa-miR-34b-5p [84] hsa-miR-17-5p [84]
hsa-miR-4485 [89] hsa-miR-18a-5p [84]
hsa-miR-449b-5p [84] hsa-miR-18b-5p [84,94]
hsa-miR-449c-5p [84] hsa-miR-19a-3p [89]
hsa-miR-585-3p [91] hsa-miR-1914-5p [91]
hsa-miR-92b-3p [84] hsa-miR-193-3p [84,94]
XLOC_000122 [83] hsa-miR-193b-3p [84]
XLOC_003006 [83] hsa-miR-199a-3p [89]
XLOC_011814 [83] hsa-miR-199a-5p [89]
XLOC_015500 [83] hsa-miR-199b-3p [89]

Table 2. Noncoding Sequences With Differential Expression in CRSwNP Patients 

Upregulated Downregulated 

XLOC_016248 [83] hsa-miR-20a-5p [84]
XLOC_017561 [83] hsa-miR-20b-5p [84]
XLOC_018649 [83] hsa-miR-23a-3p [84]
XLOC_018891 [83] hsa-miR-23a-5p [91]
 hsa-miR-25-3p [94]
 hsa-miR-27a-3p  [84,94]
 hsa-miR-29a-3p [84,94]
 hsa-miR-30e-3p [89]
 hsa-miR-30e-5p [89]
 hsa-miR-3149 [91]
 hsa-miR-3184-5p [91]
 hsa-miR-3196 [91]
 hsa-miR-32-3p [91]
 hsa-miR-3614-5p [89]
 hsa-miR-362-3p [89]
 hsa-miR-363-3p [89]
 hsa-miR-375 [91]
 hsa-miR-377-5p [91]
 hsa-miR-3924 [91]
 hsa-miR-486-5p [89]
 hsa-miR-500a-5p [91]
 hsa-miR-532-3p [91]
 hsa-miR-548e-3p [91]
 hsa-miR-550a-3p [89]
 hsa-miR-574-5p [91]
 hsa-miR-584-5p [89]
 hsa-miR-612 [91]
 hsa-miR-628-3p [89]
 hsa-miR-6503-3p [89]
 hsa-miR-663 [93]
 hsa-miR-668-3p [91]
 hsa-miR-6867-5p [89]
 hsa-miR-708-5p [89]
 hsa-miR-92a-3p [84,87]
 hsa-miR-942-3p [89]
 XLOC_005882 [83]
 XLOC_010305 [83]
 XLOC_010540 [83]
 XLOC_015712 [83]
 XLOC_018024 [83]
 XLOC_018529 [83]
 XLOC_019396 [83]
 XLOC_025155 [83]

Abbreviation: CRSwNP, chronic rhinosinusitis with nasal polyposis.

3) Olive cluster: TNF and related genes

The olive cluster is organized around TNF. Many studies 
have focused on this crucial gene, showing a positive 
correlation between rs1800629 and the risk of NP [35,37,42,47-
50], although other authors failed to find such a correlation 
[28,51]. Thus, Mfuna-Endam et al [28] did not find an 
association for any of the 16 SNPs studied, while Berghea 
et al [51] reported rs1799724, but not rs1800629, as being 
associated with increased risk. Moreover, Szabo et al [48] 

reported that the association with NP was linked to an ancestral 
haplotype (8.1), including rs1800629, AGER rs1800625, 
HSP70-2 rs1061581, and LTA rs909253. 

MT-CO2 (COX2) rs20417 [52] and NOS-2 and CAT [53] 
have also been related to NP. Data and pathway analysis 
supported the association between COX genes and increased 
risk of NP, as shown in Figure 4B.

The olive cluster is closely related to the red cluster, 
with IL10 as the connecting node. IL10 rs1800870 [54] 
and rs1800896 [37] have been reported to be associated 
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with an increased risk of NP, whereas IL10 rs1800872 and 
rs1554286 [54] seemed to confer protection against NP.

4) Turquoise cluster

In the case of ALOX genes, the missense variant 
rs34210653[A] (Thr560Met) in ALOX15 would confer a 
68% reduction in the risk of NP [55]; ALOX5 rs3780894 
and ALOX5AP rs17612127 have been associated with the 
disease [56]. While an association with NP has been published 
for LTC4S rs730012 [57,58], other authors did not find such 
a relationship [56].

5) Light green cluster: TAS genes

Taste receptor genes (TAS) have also been extensively 
studied in relation to NP. Mfuna-Endam et al [59] published 
an exhaustive overview of 19 TAS receptor genes, showing 
different allele frequencies between patients and controls for 
57 SNPs in TAS2R genes and 16 SNPs in TAS1R genes.
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Figure 3. Main biological functions involving the genes reported as being associated with chronic rhinosinusitis with nasal polyposis.

Figure 2. Risk of bias (A) and quality assessment (B) of the selected articles.
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and those that decrease the risk of chronic rhinosinusitis with nasal polyposis.
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Several authors have focused on 3 SNPs of TAS2R38, ie, 
rs713598 (C145G; Pro>Ala), rs1726866 (C785T; Ala>Val), 
and rs10246939 (G886A; Val>Ile). The PAV genotype has 
been associated with better outcomes [60], while the alternate 
genotype AVI has been related to an increased risk of NP [61]. 
Other studies did not find any association between these 
variants and the disease [62,63]. 

With respect to ADORA1, differences in allele frequencies 
were reported only for NP patients with AERD [64].

6) Other clusters

The blue cluster genes FCER1A, FCER1G, and MS4A2 
have been associated with an increased risk of NP [54,65].  

In the purple cluster, it is worth mentioning a gene related 
to cystic fibrosis that has also been studied in NP, namely, 
CFTR, and the variant ΔF508, albeit with contrasting results. 
While it was significantly associated with NP in a Polish 
population [66], data from a Finnish cohort did not show any 
differences compared with healthy controls [67], and Wang 
et al [68] reported its presence in only 7% of American patients 
tested. Allele A of ADRB2 rs10452713 appeared to be more 
frequent in NP patients [69], while the association between 
CCL11 and NP was described as statistically weak [70].

Regarding the green cluster, MET has been associated with 
an increased risk of NP [52,71], while the SERPINA1 [72] and 
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Figure 6. Enrichment of miRNAs in biological processes. A, Functions 
involving miRNA upregulated in CRSwNP. B, Functions involving 
downregulated miRNA. C, Association between miRNA and relevant 
diseases. FXS, indicates fragile X syndrome; DM, diabetes mellitus; VM, 
viral myocarditis; AR, allergic rhinitis; R, rhinosinusitis; A, asthma.
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LAM genes [73] seemed to be associated with NP. However, 
Zhang et al [40] could not replicate the LAM results in a 
Chinese population.

Epigenetic Studies

Two of the selected studies focused on histone 
acetylation [74,75], 7 on DNA methylation [76-82], and 12 
on ncRNAs, both lnc- [83] and miRNAs [84,85,94,86-93]. One 
article aimed to determine varying DNA modifications [95], 
and another explored polyadenylation [96]. We also included 
an mRNA expression study because it investigated miRNA 
machinery components in CRSwNP [97].

Histone Acetylation

Two studies by the same group examine hyperacetylation 
of histone H4 due to inhibition of histone deacetylase 2 
(HDAC), which seemed to be associated with myofibroblast 
differentiation and extracellular matrix accumulation in NP 
(Supplementary Table 2).

DNA Modifications

While most articles refer to DNA methylation, Seiberling 
et al [95] also explored other modifications, such as bromination 
and chlorination of cytosines, and found significantly higher 
levels of 5-bromocytosine in polyps when compared with 
healthy ethmoid tissue.

Cheong et al [76] performed a genome-wide DNA 
methylation assay, comparing NP and blood samples from 
aspirin-intolerant asthma patients and aspirin-tolerant asthma 
patients. While several differentially methylated loci were 
found, the results must be interpreted with caution, given 
the purpose of this current systematic review and the lack of 
proper healthy controls.

Kim et al [79] performed a methylation profiling study 
comparing NP with uncinate process tissue and found that 
397 and 387 genes were hypermethylated in patients with 
eosinophilic CRSwNP and noneosinophilic CRSwNP, 
respectively, and that 399 and 208 genes were hypomethylated 
compared with healthy controls. Most genes were involved in 
cancer pathways.

Specific genes involved in NP were selected to determine 
the degree of methylation in their promoter regions. KRT19, 
NR2F2, ADAMTS1, and ZNF222 were the top 4 genes whose 
promoters were significantly hypomethylated in NP in Korean 
patients [78], whereas COL18A1, EP300, GNAS, and SMURF1 
were reported to be the 4 most changed genes in Chinese 
CRSwNP patients [82]. DNA methylation has also been 
studied in individual genes, such as PLAT [77], TSLP [80], 
and IL8 [81].

RNAs

Most studies on noncoding RNAs focus on miRNA. Table 
2 shows all the available lcnRNAs and miRNAs published in 
the selected articles (25 upregulated and 62 downregulated 
RNAs). Interestingly, in 1 study, not all the entities analyzed were 
accessible to us [93]. Therefore, we would suggest the interested 
reader check the original article for a complete overview.

We then analyzed the list of miRNAs using the online 
tool TAM 2.0. The results are shown in Figure 6. First, we 
analyzed upregulated and downregulated miRNAs and plotted 
them using bubble plots (Figure 6A and B, respectively). The 
size of the bubble indicates the number of input miRNAs 
present in each set. As shown, the top functions related to 
upregulated miRNAs were cell cycle (P-value 8.28e-9; FDR 
3.34e-6), cell proliferation (P-value 1.42e-6; FDR 1.73e-4), 
and inflammation (P-value 2.60e-6; FDR 2.25e-4), while 
the top functions related to downregulated miRNAs were 
hormone-mediated signaling pathways (P-value 2.82e-13; 
FDR 8.55e-11), immune response (P-value 7.00e-13; FDR 
1.41e-10), and inflammation (P-value 5.68e-10; FDR 3.27e-8). 
We also include correlations (Figure 6C) between deregulated 
miRNAs found in the studies selected and deregulated miRNAs 
in relevant disease conditions, such as allergic rhinitis and 
rhinosinusitis. However, the indexes were low compared with 
the top 3 diseases (also included in the plot).

The role of miRNAs in the development of NP has been 
reported through regulation of the expression of relevant 
genes, including IL10 [86], AHR [85], EGR2 [87], EGFR [91], 
TGFB [92], and 4E-BP1 [94].

In relation to miRNA processing, Zhang et al [97] studied 
the components of miRNA machinery and found that PACT 
mRNA expression was upregulated in CRSwNP compared 
with controls, while no differences were observed for other 
components.

Tian et al [98] demonstrated switching of 3UTR lengths 
in nasal polyps when compared with uncinate process mucosa 
from the same patient. The authors also described a switch 
to distal or proximal polyA sites in several genes, including 
DEDD, p53RPF, SOD1, and SOD2, which may affect 
regulation of their expression.
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Genes to miRNA

In an attempt to combine the information obtained from 
genetics and epigenetics studies, we ran the list of miRNAs 
and the list of genes using the online tool miRSystem to 
investigate synergies between the two. We found links for 25 
genes out of 99 and 37 miRNAs out of 87 (Figure 7). Among 
them, RYP and FOXP1 were connected with the largest 
number of miRNAs (15 and 14 miRNAs, respectively).  The 
miRNAs that appeared to be associated with more genes in 
the list were hsa-miR-17-5p, hsa-miR-19a-3p, hsa-miR-20a-
5p, and hsa-miR-27a-3p. 

Discussion

In this systematic review, we bring together all the 
information on the genetics and epigenetics of NP published 
since 2000. Following the PRISMA guidelines for systematic 
reviews and meta-analysis, we found 104 articles published 
between 2000 and May 2020 that fulfilled our inclusion criteria. 
We identified more than 150 genetic variants in 99 genes 
involved in the pathogenesis of NP; these variants increase 
and decrease the risk of developing NP or are associated with 
the disease. Most of the studies were of good quality, with 
a low risk of bias. We also included a search for epigenetic 
mechanisms that may underlie the pathogenesis of NP. These 
epigenetic studies focused mainly on describing the miRNAs 
involved in NP or risk of NP. The 87 miRNAs identified 
are associated with biological functions such as cell cycle, 
inflammation, and immune response. DNA methylation has 
also been compared in NP patients and healthy controls. 

Both hypomethylated and hypermethylated genes and gene 
promoters have been identified and are mostly associated 
with cancer pathways in the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) [78].

To obtain a more in-depth knowledge of the published 
data, we analyzed the information compiled using the 
many tools available online. Our analysis of genetic studies 
was based on more than 13 000 healthy controls and over 
9600 CRSwNP patients, as well as on 2 large database 
studies. Previous reviews [2,8] had already analyzed altered 
genes and associated functions in CRSwNP, although no 
thorough study of clusters has been performed to date. Eight 
main clusters were identified. Of these, the HLA gene cluster 
was the most populated one and appeared only as a cluster 
when analyzing those SNPs associated with reduced risk 
of CRSwNP, with a clear dominance of class II HLA genes 
over class I. In fact, the MHC class profile could be used 
to differentiate CRSsNP from CRSwNP, since upregulation 
of MHC-class I–mediated antigen presentation has been 
associated with CRSsNP [99].

Other critical functional clusters were those including IL 
genes (in association with TNF and NOS), leukotriene-related 
genes (ALOX5 and -15), IgE receptor-related genes (FCER), 
taste receptors (TAS-R), and CFRT. Data for several genes, 
such as TNF, TAS2R38, and NOS2, were extracted from several 
studies performed in different populations, thus reinforcing the 
role of these genes in NP. Although the role of other genes has 
not been confirmed to date, recent studies on the efficacy of 
anti-IgE omalizumab [100], anti-IL4R dupilumab [101,102], 
and anti-IL5 mepolizumab [103] suggest the involvement of 
the FCER and IL genes in NP. Mechanisms depending on 
Fc epsilon receptor (FcεR) activation have been reported to 
underlie airway inflammation and airway remodeling [102]. 
On the other hand, taste receptors seem to be associated more 
clearly with CRS [59]. 

It is worth mentioning the increased risk of CRSwNP 
associated with airway inflammation and extracellular matrix 
remodeling as per clustering analysis, which is consistent 
with the literature on relevant genes, ie, cyclooxygenase 
2 (COX2) [99], matrix metalloproteinase (MMP) 2 and 
9 [100,101], and cystic fibrosis transmembrane regulator 
(CFTR) [104]. Moreover, a transcriptomic analysis of the 
different stages of CRS, ranging from rhinitis to severe 
NP, has identified elevated expression of transcripts in 
polyps involved in extracellular matrix remodeling and 
chemoattraction of effector cells, strong induction of a 
combined IL4/IL13 signature, and decreased protease-
inhibitor expression and metabolic genes [105]. 

Another strength of the current systematic review is the 
inclusion of genetic and epigenetic mechanisms and our 
tentative approach to interconnect them. While we are aware 
that this approach is theoretical and based on software analysis 
and must be confirmed experimentally, it could be a good 
starting point for future research on the molecular mechanisms 
involved in CRSwNP. Interestingly, in the articles we reviewed, 
some of the miRNAs encoded in the MHC genes have been 
identified as being related to NP, namely, miR-152, miR-20a, 
and miR-19a. These may affect the expression of class I MHC 
molecules such as HLA-B [98].  

Figure 7. Relevant genes linked to miRNA. Genes found in the selected 
genetic articles that have been published as connected to miRNA 
identified by the selected epigenetic articles.
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Conversely, as a limitation of the present review, we 
must address the lack of proper controls in 10 of the 80 
genetic studies, while most of the epigenetic articles include 
healthy tissues as controls. Furthermore, since over 80% 
of the genes were mentioned in only 1 study, their role in 
NP remains to be confirmed. Another limitation of some 
studies was the use of databases as a source of genetic data 
in healthy controls. While databases are easily accessible 
repositories of gene variation, critical clinical information 
about the patients is likely ignored. Therefore, it cannot be 
ruled out that the "supposedly" healthy population included 
mild cases of relevant atopy or asthma that could undermine 
the conclusions. 

As CRS is a feature of cystic fibrosis in White populations, 
mutations in the cystic fibrosis transmembrane regulator 
gene (CFTR), a chloride channel of the plasma membrane, 
have also been associated with NP [68]. However, other 
authors did not find such an association [69]. For patients 
who were heterozygous for ∆F508 and a residual function 
allele, tezacaftor plus ivacaftor was found to improve lung 
function (FEV1) when compared with placebo and ivacaftor 
alone [106]. This treatment has already been approved for 
∆F508 carriers [2]. In a prospective study in the Netherlands, 
ivacaftor proved efficacious in NP in patients harboring the 
S125N mutation [107].

Finally, we cannot forget the new field of medical care 
resulting from exploration the therapeutic potential of 
miRNAs. Several ongoing clinical trials are testing the safety 
and efficacy of miRNAs for the diagnosis and treatment of 
diverse cancers [108]. Opening the field to other diseases, such 
as CRS, will undoubtedly be worth the effort.

Final Remarks

This systematic review aimed to bring together all the 
available information on the genetics and epigenetics of 
CRSwNP. The more than 100 articles reviewed provided 
data on multiple SNPs and genetic variants associated 
with the risk of developing the disease, which was both 
increased and reduced. Furthermore, several miRNAs and 
other epigenetic traits have been identified as differentially 
expressed in CRSwNP patients. Clusters of genes and the 
potential relationship between miRNAs and genes have 
been proposed. New lines of research are open for further 
investigation.
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