Early Effectiveness of Dupilumab in Patients With Type 2 Severe Asthma: A Prospective Real-Life Study

Castilla-Martínez M¹, Andújar-Espinosa R²,³, Flores-Martín I⁴, Reyes Cotes MH⁵, Cabrerois-Perotti S⁶, Miralles-López JC⁷, Carbonell-Martínez A⁸, Bravo-Gutierrez FJ⁹, Valverde-Molina J⁴⁰, Pérez-Fernández V⁴¹, RE-ASGRAMUR GROUP* ¹Pulmonology Department, University General Hospital Los Arcos, San Javier, Murcia, Spain ²Pulmonology Department, University Clinic Hospital Virgen de la Arrixaca, Murcia, Spain ³Medicine Department, University of Murcia, Murcia, Spain ⁴Allergy Department, University General Hospital Santa Lucía, Cartagena, Murcia, Spain ⁵Pulmonology Department, University General Hospital Santa Lucía, Cartagena, Murcia, Spain ⁶Allergy Department, General Hospital Rafael Méndez, Lorca, Murcia, Spain ⁷Allergy Department, University General Hospital Reina Sofia, Murcia, Spain ⁸Allergy Department, La Fama Medical Center, Murcia, Spain ⁹Pulmonology Department, University General Hospital Santa Lucía, Cartagena, Murcia, Spain ¹⁰Pediatrics Department, University General Hospital Santa Lucía, Cartagena, Murcia, Spain ¹¹Department of Public Health Sciences, University of Murcia School of Medicine, Murcia, Spain ¹²Members of the RE-ASGRAMUR (Register of Severe Asthma of the Region of Murcia) Group are listed in Supplementary Appendix 1.

The demographic and clinical characteristics are detailed in Supplementary Table 1. The mean age of the study population was 53.7 years, and 13 patients were women (52%). The average body mass index was 26.6. Eight patients (33.3%) were current or former smokers, and 15 (60%) were atopic. The mean baseline blood eosinophil count was 491.6/µL, total IgE was 698.5 kU/L, and FeNO was 46.3. Fifteen patients (62.5%) had nasal polyposis with a mean SNOT-22 score of 62.8. Of these patients, 9 (60%) had undergone at least 1 operation. Nine patients (36%) received OCS at baseline, with a mean dose of 13.6 mg/d. Ten patients (40%) had prior treatment with another biologic agent (5 omalizumab, 4 mepolizumab, and 1 benralizumab).

In the previous year, the average exacerbation rate was 3.4, and 12 participants (52.2%) attended the emergency department at least once. The mean ACT was 13.2, the mean AQLQ was 3.6, and FEV₁ was 2.27 L (69.1%).

The demographic and clinical characteristics are detailed in Supplementary Table 1. We compare the parameters collected at baseline, 4 weeks, and 12 weeks from initiation of dupilumab. The results for the study population are shown in the Table. Supplementary Figure 1 shows the results for patients with complete data after 3 follow-up visits.

A significant and rapid improvement in asthma control was achieved. The median (IQR) ACT score increased from 12 (10-15) to 21 (18-23) after 12 weeks of follow-up. However, at week 4, this score was already 20 (14-22) and well above the minimum clinically important difference. In addition, the percentage of patients with an ACT score ≥20 increased from 13% to 58% at week 4, whereas at week 12, only 2% more
patients achieved that score. Rapid improvement in symptom control has also been observed in other real-life studies, although this was more progressive [9]. A longer follow-up of our series will enable us to determine whether even more relevant improvements in ACT are achieved.

Consistent with other authors [6], we found a significant and rapid improvement in lung function after treatment with dupilumab. The median FEV₁/Z score increased from −2.45 (−3.2 to −1.9) to −1.64 (−2.5 to −1.2) at week 4 and to −1.37 (−1.7 to −0.5) at week 12. Furthermore, we observed that median FEV₁ increased by 190 mL at week 4 (P = .015) and by 300 mL at the end of follow-up (P = .008). This improvement is similar to that reported in phase 3 studies [10] and greater than that reported in other real-life studies [8].

FeNO decreased significantly, and quality of life increased at weeks 4 and 12 of treatment. These real-world results confirm the findings reported in a pivotal trial assessing dupilumab [11].

The results of 9 patients taking OCS at baseline are shown in Supplementary Table 2. Six of these patients (67%) were able to reduce their OCS dose by at least half during the follow-up period.

Regarding patients with polyposis, our results are similar to those of studies that evaluated this disease [12] (see Supplementary Table 2). All the patients with atopic dermatitis improved, with resolution of skin lesions within the first month of dupilumab treatment.

Dupilumab had to be withdrawn in only 1 case owing to metrorrhagia, which resolved after withdrawal of the drug. One patient had arthralgia and another headache at the start of treatment. Another patient had >1500 blood eosinophils but had no related symptoms, and the initial eosinophil count was already high. Mean eosinophils remained the same at 3 months as at baseline. However, hypereosinophilia has been reported in some cases [13].

We acknowledge the limitations of our study. It was uncontrolled, with a limited cohort size and a brief evaluation time, which was insufficient to assess the impact on exacerbations. However, the reduction in FeNO levels could be an indirect indicator of a lower risk of exacerbation [14]. Although the FEV₁, Exacerbations, Oral corticosteroids, Symptoms score is designed to assess the response to treatment in patients with severe asthma from 16 weeks and our follow-up period is shorter, we applied it in our series, obtaining an average score of 73.12 at week 12 [15].

Unlike previous real-life studies, ours was a prospective study in which a lower proportion of patients had previously received OCS or monoclonal antibody therapy [8-9]. Therefore, we believe that our sample is more representative of the population that will receive dupilumab in the future.

In conclusion, dupilumab led to an early improvement in symptom control, lung function, type 2 response markers, and quality of life in our series. The response to this drug was rapid, resulting in improvements in these clinical parameters from the first 12 weeks after initiation.

Funding

The authors declare that no funding was received for the present study.

Conflicts of Interest

Juan Carlos Miralles López has received consultancy fees from Chiesi and speaker fees from Novartis, GSK, AstraZeneca, Sanofi, and Chiesi. Rubén Espinosa Andújar has received speaker fees from Novartis, GSK, AstraZeneca, Sanofi, and Chiesi. Manuel Castilla Martínez has received consultancy fees from GSK and AstraZeneca and speaker fees from Novartis, GSK, AstraZeneca, Sanofi, and Chiesi. Isabel María Flores Martín has received speaker fees from Novartis,
GSK, Sanofi, AstraZeneca, Gebro, and Roxall. José Valverde Molina has received consultancy fees from AstraZeneca, fees for advisory board participation from GSK and Novartis, and speaker fees from Novartis, GSK, AstraZeneca, Sanofi, Teva, Orion Pharma, and GEBRO. Miguel Henrique Reyes Cotes has received speaker fees from GSK and AstraZeneca. Antonio Carbonell Martinez has received speaker fees from GSK, Novartis, Sanofi, Stallergenes, and Allergy Therapeutics. Francisco Javier Bravo Gutiérrez has received speaker fees from Novartis, Ferrer, GSK, AstraZeneca, Sanofi, and Chiesi. The remaining authors declare that they have no conflicts of interest.

References