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	 Abstract

Bronchial asthma is a chronic inflammatory disease of the respiratory tract that varies in terms of clinical presentations (phenotypes) and 
distinct underlying pathophysiological mechanisms (endotypes). The definition of phenotype/endotype is crucial, given the availability of 
novel biologic agents for patients who do not respond to conventional therapies. Although patients with type 2 severe asthma benefit 
significantly from treatment with biologics, nonresponders have been identified. Comorbidities worsen the symptoms of asthma and 
complicate management of the disease. The assessment and treatment of comorbidities is a crucial step, and appropriate management 
may improve asthma symptoms and morbidity. Among comorbidities, those with a marked negative impact on control despite appropriate 
treatment include chronic rhinosinusitis with nasal polyps, obesity, bronchiectasis, and immune deficiency. Although asthma is frequently 
characterized by increased blood eosinophils that release mediators and cytokines and are involved in inflammation of the airway wall, 
in patients with very high blood eosinophil levels, we must differentiate between isolated severe eosinophilic asthma and asthma in 
eosinophilic granulomatosis with polyangiitis. In addition, hypereosinophilia may result from specific biological treatment, as in the case 
of dupilumab. We outline the clinical features of patients with severe asthma whose disease is complex to manage.
Key words: Biologics. Severe asthma. Dupilumab-induced hypereosinophilia.

	 Resumen

El asma bronquial es una enfermedad inflamatoria crónica de las vías respiratorias que varía en términos de presentaciones clínicas 
(fenotipos) y distintos mecanismos fisiopatológicos subyacentes (endotipos). La definición de fenotipo/endotipo es crucial teniendo en 
cuenta la disponibilidad de nuevos agentes biológicos dedicados a pacientes que no responden a las terapias convencionales. Aunque los 
pacientes que padecen asma grave tipo 2 se benefician significativamente del tratamiento con productos biológicos, no se han identificado 
específicamente pacientes que respondan. Las comorbilidades aumentan los síntomas del asma y complican el manejo general de la 
enfermedad. La evaluación y el tratamiento de las comorbilidades es un paso crucial y su manejo adecuado puede mejorar los síntomas y 
la morbilidad del asma. Entre las comorbilidades, ciertamente, la rinosinusitis crónica con pólipos nasales, la obesidad, las bronquiectasias 
y los defectos inmunológicos representan un grupo de condiciones clínicas que impactan negativamente en el control del asma, a pesar 
de un correcto tratamiento. Aunque el asma se caracteriza frecuentemente por un aumento de los eosinófilos en sangre que liberan 
mediadores y citocinas que están implicados en los procesos inflamatorios de la pared de las vías respiratorias, en pacientes con niveles 
muy elevados de eosinófilos en sangre es crucial ser muy cuidadoso en discernir si se trata de un caso aislado de asma eosinofílica grave 
o un caso de asma eosinofílica en el seno de una granulomatosis eosinofílica con poliangeitis (EGPA). Además, la hipereosinofilia puede 
ser consecuencia de un tratamiento biológico específico como es el caso del dupilumab. En este trabajo hemos esbozado las características 
clínicas de aquellos pacientes con asma grave en los que el manejo de la enfermedad puede ser más complejo.
Palabras clave: Biológicos. Asma severa. Hipereosinofilia inducida por dupilumab.
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Introduction

Bronchial asthma (BA) is a chronic inflammatory disease 
of the respiratory tract that varies by clinical presentation 
(phenotype) and distinct underlying pathophysiological 
mechanisms (endotype) [1,2]. In terms of endotype, asthma 
can be categorized as type 2 (eosinophilic) or non–type 2 
(noneosinophilic) [3,4]. The type 2 inflammatory process is 
the result of the involvement of type 2 helper T (TH2) cells, 
type 2 innate lymphoid cells, mast cells, eosinophils, and 
structural cells of the airway walls, all of which produce 
several cytokines, including interleukin (IL) 4, IL‐5, IL‐9, 
and IL‐13 [5]. Similarly, type 2 inflammation plays a pivotal 
role in chronic rhinosinusitis with nasal polyps (CRSwNP), 
a major comorbidity of severe asthma. The definition of the 
phenotype/endotype of both asthma and CRSwNP is crucial, 
given the availability of novel biologic agents for patients 
who do not respond to conventional therapies [6-8]. Although 
patients with type 2 severe asthma and/or CRSwNP benefit 
significantly from treatment with biologics in terms of clinical 
improvement and corticosteroid‐sparing effect, nonresponders 
have been identified [9,10]. In addition, although the safety 
profile of biologics used in asthmatic patients has been 
clearly confirmed in long-term studies, some treated patients 
may experience adverse infusion reactions, increased risk of 
infection, and paradoxical hypereosinophilia [11]. In this paper, 
we outline the clinical features of patients with severe asthma 
whose management is more complex.

Complexity of Management of Severe 
Asthma

Asthma Associated With CRSwNP

Comorbidities increase the symptoms of asthma and 
complicate disease management. In the evaluation of patients 
with asthma, assessment and treatment of comorbidities is 
a crucial step, and appropriate management may improve 
symptoms and morbidity. CRSwNP has been reported to be 
a frequent comorbidity of severe asthma [12]. Symptoms 
such as loss of smell, nasal congestion and/or obstruction, and 
rhinorrhea have a significant impact on social and health-related 
quality of life. In fact, the presence of CRSwNP in asthmatic 
patients is associated with worsening of asthma outcomes 
and, more specifically, with an increased risk of exacerbations 
and need for oral corticosteroids (OCS) [13-15]. In one large 
study population, the multivariable analysis demonstrated 
that CRS remained significantly associated with frequency of 
exacerbation, even after adjustment for age, sex, adherence, 
body mass index, blood eosinophil count (BEC), and IgE 
levels  [16]. Moreover, CRSwNP exerts a more pronounced 
effect on asthma symptoms in patients with more severe asthma 
at baseline [17]. Patients with CRSwNP generally have a high 
symptom burden, with a clinical history of repeated sinus 
surgery. In addition, it has been demonstrated that OCS are most 
consistently recommended as acute oral therapy for patients 
with moderate-to-severe CRSwNP [18,19]. Of note, asthma 
and CRSwNP are often associated with aspirin/nonsteroidal 
anti-inflammatory drug exacerbated respiratory disease [20]. 

There is a clear need for characterization of CRSwNP, which 
is typically characterized by type 2 inflammation in about 80% 
of cases, whereas CRS without NP is often characterized by 
type 1 or type 3 inflammation [21-23]. In a recent systematic 
review, the complexity of the disease was illustrated by the 
identification of 150 genetic variants in 99 genes involved in 
the pathogenesis of NP [24].

Asthma and CRS can share type 2 inflammatory pathways 
and similar histological alterations. In fact, in CRSwNP, 
in addition to diffuse tissue eosinophilia and eosinophilic 
aggregates, the disease is characterized by basement membrane 
thickening, subepithelial edema and fibrosis, and goblet cell 
hyperplasia with mucin hypersecretion, which comprise a 
process similar to airway remodeling in asthma [25]. Of note, 
biologics administered in severe asthma have a more marked 
clinical effect in the subgroup of patients with concomitant 
CRSwNP. Mepolizumab has been shown to reduce the annual 
exacerbation rate in patients with severe eosinophilic asthma 
compared with placebo regardless of NP status, albeit to a 
greater degree in those with NP (80%) than in those without 
NP (49%), as demonstrated in the meta-analysis of the 
MUSCA and MENSA studies, which included 936 patients, 
166 of whom (18%) presented with NP at baseline  [26]. 
The ANANKE study supports the previous CALIMA 
and SIROCCO responder analyses, where CRSwNP was 
identified as a clinical characteristic of enhanced response to 
benralizumab [27,28]. Both dupilumab and omalizumab have 
demonstrated efficacy in the treatment of CRSwNP [7,8,29,30], 
although no data are available with respect to an increased 
impact of baseline NP on their efficacy in type 2 asthma.

In clinical practice, patients often achieve a good clinical 
response with respect to asthma symptoms, but not for those 
of CRS, as reported in a small case series [31]. Moreover, in 
individual patients, the biological mechanisms underpinning 
asthma and CRS may only be partially similar, not only in 
terms of severity, but also in terms of the cellular and molecular 
actors driving the inflammatory process.

Asthma in Obese Patients

Obesity-associated asthma is a difficult-to-treat, poorly 
controlled phenotype, with poor outcomes in terms of 
morbidity and mortality. In fact, it has been shown that 
obesity is linked to frequent exacerbations and increased use 
of OCS [32-35]. In addition to suboptimal control of asthma, 
obese patients experience significantly higher acute severity, 
including the need for mechanical ventilation and longer 
hospital stay than nonobese patients [33]. In asthma, obesity 
seems to affect expression of the type 2 biomarkers used mainly 
for defining the eligibility criteria for biologics. Indeed, it has 
been demonstrated that increased body mass index is associated 
with reduced FeNO, independent of the corticosteroid dose, 
with important implications for tailoring treatment in the era 
of precision medicine [35]. From a pathogenic perspective, 
adipocytes produce a large panel of factors, including immune-
modulating molecules, which promote a TH2 response, mast 
cell degranulation, and airway remodeling [36]. Adiponectin 
is a major adipocyte-derived factor owing to its multiple 
biological functions, and low serum adiponectin levels have 
been reported to be play a key role in obese asthma patients, 
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particularly in women [37]. In fact, adiponectin has a series of 
functions. First, it inhibits apoptosis of epithelial cells after cell 
injury and promotes repair and proliferation of bronchial basal 
cells. Second, it reduces the tumor necrosis factor (TNF) a–
induced secretion of chemokines by monocytes/macrophages 
(CCL2) and mastocytes (CXCL1). Third, overexpression of 
adiponectin has been shown to counteract the action of IL-13 
in an ovalbumin-induced mouse model of airway inflammation. 
Fourth, overexpression of adiponectin reduces mucus secretion 
by inhibiting the expression of omentin and MUC5AC. Fifth, it 
inhibits the IL-33–stimulated NF-κB pathway and production 
of IL-13 by type 2 innate lymphoid cells. Sixth, it reduces 
eotaxin-promoted eosinophil chemotaxis and adhesion. Finally, 
it increases the secretion of IL-10 in peripheral T regulatory 
(Treg) cells, particularly in a TH2 milieu [38-46]. 

The non–type 2 pattern of inflammation is increasingly 
important in obese asthmatic patients. In fact, the major 
obesity-associated asthma phenotype is characterized as late-
onset, severe, and difficult-to-treat type 2–low inflammation, 
although eosinophilic inflammation is sometimes present 
in this form of asthma [47]. Interferon-related signaling 
pathways are overrepresented in obese asthmatics, compared 
with both healthy controls and nonobese asthmatics. These 
pathways are induced by various interferon-inducing factors 
such as leptin hormone [48,49]. In obese asthmatics, the 
severity and frequent exacerbation of asthma episodes might 
be further influenced by increased susceptibility to respiratory 
viral infections [50].

Obesity can also negatively impact the clinical effects 
of biologics because body weight is a clinically relevant 
covariant that may modify the pharmacokinetics of these 
drugs [51,52]. Pharmacokinetics covers 4 basic processes, 
namely, absorption, distribution, metabolism, and excretion. 
These nonspecific general processes affect the amount of 
active drug that reaches the target of action intact and, 
therefore, influences its activity. Unlike conventional drugs, 
the monoclonal antibodies (mAbs) used in asthma can be 
administered exclusively via the intravenous route or the 
subcutaneous route. Subcutaneous absorption can be reduced 
by presystemic elimination owing to the activity of soluble 
peptidases, endothelial endocytosis and subsequent lysosomal 
degradation, and interaction with the phagocytic immune 
cells in the lymph nodes [53].

After distribution in tissue, mAbs are eliminated mainly 
via catabolism following endocytosis and transport to the 
lysosome. A protective mechanism for IgG molecules, 
including mAbs, consists in the recycling of the molecules 
through the interaction with FcRn localized in the endosomes. 
Therefore, treatment of obese patients with severe asthma must 
be accompanied by a dietary strategy to reduce body weight 
and limit the impact of obesity on the aforementioned aspects. 

For mAbs administered subcutaneously, as in the case 
of those used in severe asthma, absorption into the systemic 
circulation first requires convective transport of the mAb 
through the interstitial space into the lymphatic system, which 
may prove more difficult in obese patients [53]. Very few data 
on this topic are available. Even though body weight seems to 
explain the between-patient variability in the pharmacokinetics 
of dupilumab in asthma, no dose adjustment is recommended 

with regard to body weight, given the limited difference in 
efficacy and safety across the weight categories [54]. Similarly, 
body weight, as well as high-titer antidrug antibodies (see 
below), was identified as a relevant covariate influencing the 
pharmacokinetics of benralizumab, thus highlighting the need 
for a more rational selection of dosage regimens in asthma 
patients [55].

Therefore, correct phenotyping of the obese asthma 
patient should enable us to develop a rational therapeutic plan, 
comprising both a pharmacological approach and specific 
antiobesity therapies, including bariatric surgery [56].

Oral Corticosteroid–Dependent Patients

Inhaled corticosteroids constitute the first line of therapy 
for patients with persistent asthma because they inhibit almost 
every aspect of the airway inflammatory process [57]. Inhaled 
corticosteroids are effective in most patients with asthma, 
irrespective of age or disease severity. They not only control 
asthma symptoms and improve lung function, but also prevent 
exacerbations and may reduce asthma-associated mortality and 
the irreversible changes in airway function that affect some 
patients [58]. However, a proportion of asthmatic patients 
become dependent on OCS, ie, they are forced to use frequent 
courses of OCS to treat exacerbations or a daily dose to control 
symptoms, despite proper inhalation therapy [59]. Asthma 
patients with type 2–low inflammation are characterized 
by a low response to OCS. Most patients with persistent 
eosinophilic inflammation, on the other hand, tend to respond 
well to OCS  [60]. Although OCS-dependent patients with 
severe asthma account for a small proportion of the general 
asthmatic population, they generate considerable health care 
costs, with a notable increase in morbidity, hospitalization, 
mortality, and adverse effects [61]. Several molecular 
mechanisms contribute to the resistance of cells to the anti-
inflammatory effects of corticosteroids in severe asthma, 
with mechanisms differing between patients [62]. Resistance 
to corticosteroids may result from defects at different levels 
in glucocorticoid signaling, such as reduced glucocorticoid 
receptor expression, reduced binding of glucocorticoids to their 
receptor, impaired nuclear translocation, or altered cofactor 
activity [63,64]. From a clinical point of view, it is important 
to consider that OCS may interfere with the correct detection 
of available and validated biomarkers, such as FeNO and blood 
eosinophils. For patients with OCS-dependent asthma who 
are more likely to have a type 2 phenotype, it is advisable to 
perform repeated assessments using a supervised OCS-tapering 
approach to avoid the risk of exacerbation.

OCS-sparing potential has been demonstrated by 
3 biologics approved for treatment of severe asthma, namely, 
benralizumab, dupilumab, and mepolizumab, although the 
lack of head-to-head trials with these treatments prevents 
us from drawing conclusions on the optimal choice in OCS-
dependent patients. Matching-adjusted indirect comparison, 
which enables comparison of treatments across clinical trials, 
demonstrated that, after adjustment for differences in baseline 
population characteristics, similar findings were recorded 
for mepolizumab, dupilumab, and benralizumab in terms of 
reductions in OCS dosage, percentage of patients discontinuing 
OCS, and annual asthma exacerbation rates [65].  
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as this process is mediated by IL-5, but cannot move from 
blood to tissue, and while this may be a possible explanation, 
additional mechanisms are likely to be involved, as suggested 
by the fact that not all patients develop eosinophilia and the 
increase in BEC is usually nonpersistent. Finally, interference 
with the adhesion of eosinophils to endothelial cells should 
prevent the tissue infiltration that may instead complicate 
some cases of dupilumab-induced hypereosinophilia [77,80]. 
Experimental models may provide explanations. In fact, while 
IL-4 antibody is able to reduce eosinophilic infiltration in the 
lung, IL-13–/– mice treated with ovalbumin and anti–IL-4 
neutralizing antibody have more eosinophilic lung infiltrates 
than wild-type mice owing to the low levels of IL-13 that 
may result in an increase in NF-ᴋβ, which in turn increases 
synthesis of IL-5, much in the same way as in nonallergic 
asthma patients with high levels of IL-5 and eosinophils despite 
low IL-4 levels [92,93].

From a clinical point of view, patients with higher baseline 
BEC should be monitored after initiation of dupilumab. More 
careful evaluation is recommended in patients who switched 
from an anti–IL-5 or anti–IL-5R mAb to dupilumab. In fact, 
the disappearance of IL-5 axis blockade can favor unexpected 
expansion of the eosinophil population, no matter how much it 
is inhibited by the previous biologic. Similar attention must be 
given to OCS-dependent asthma/CRSwNP patients, in whom 
the rapid reduction of the corticosteroid dose, made possible 
by dupilumab, can be complicated by the increase in BEC. 

The Figure provides a proposal for the clinical management 
of dupilumab. 

Patients With Asthma, Antibody Deficiency, and 
Bronchiectasis

The clinical hallmark of antibody deficiency is the presence 
of recurrent upper and lower respiratory tract infections 
resulting in anatomical injury with bronchiectasis  [94,95]. 
Respiratory infections are strongly linked to asthma 
exacerbations, as clearly demonstrated elsewhere [96-99]. 
Antibody deficiency is a neglected but frequent comorbidity 
of asthma. It is characterized by low serum levels of 1 or 
more immunoglobulin (Ig) class and/or one or more IgG 
subclasses [100]. Viral and bacterial infections are highly 
prevalent in antibody-deficient patients, and patients with 
bronchiectasis are more prone to develop respiratory 
infections, thus creating a vicious cycle. If left untreated, 
antibody deficiency and bronchiectasis can be considered 
strong risk factors for severe asthma outcomes  [97-99]. 
The prevalence of antibody deficiency in patients with 
obstructive airway disease and bronchiectasis is certainly 
underestimated, and this comorbidity carries a significant 
disease burden [101,102]. In asthma patients, data on the 
prevalence of primary antibody deficiency are not clearly 
defined, although one large cohort study has estimated this 
to be about 5.5% [103]. Severe asthma patients, especially 
those who experience frequent respiratory infections, should 
undergo screening to exclude concomitant bronchiectasis 
and humoral immune defects. Although immunoglobulin 
replacement therapy is the standard approach for severe forms 
of primary immunodeficiency, its effectiveness in reducing the 
recurrence and the severity of infections, hospitalizations, and 

Hypereosinophilic/EGPA Patients

The normal adult range of eosinophils in blood is 30-330/ µL 
(median, 120/µL in men and 100/µL in women) [66]. 
The degree of eosinophilia is defined using the absolute 
number of circulating eosinophils in blood. Eosinophilia 
and hypereosinophilia are defined as a count greater than 
500 and 1500/µL, respectively [67]. Asthma is frequently 
characterized by an increase in BEC that leads to release 
of several mediators and cytokines that are involved in 
pathological tissue processes such as epithelial damage, 
smooth muscle hypertrophy, and impaired tissue repair, 
thus promoting chronic airway remodeling and airflow 
obstruction  [68-70]. A retrospective analysis found that 
patients with systemic eosinophilia ≥400/µL, especially when 
associated with airway eosinophilia (≥3%), were more likely 
to have worse lung function, symptoms, and impairment 
of health-related quality of life [71]. A large cohort study 
showed that the exacerbation rate increases progressively 
with ascending categories of BEC when compared with the 
reference category of ≤200/µL [72]. High BEC is typical 
of eosinophilic granulomatosis with polyangiitis (EGPA), a 
necrotizing systemic eosinophilic vasculitis that has classically 
been associated with severe asthma and nasal polyps [73]. 
Given that EGPA could represent the progression of an 
eosinophilic form of severe asthma in patients with high/very 
high BEC (although no specific BEC cut-off has been defined), 
care should be exercised when differentiating between isolated 
severe eosinophilic asthma and asthma in EGPA [74]. Of note, 
asthma, CRS, and blood eosinophilia could anticipate overt 
vasculitis for years [75]. It is also important to remember 
that BEC at baseline may influence the choice of biologic 
for asthma treatment, not only in terms of response, but also 
because the anti-IL-4Ra chain mAb dupilumab can induce a 
further increase in BEC, at least in a proportion of patients 
(see below) [76]. In fact, dupilumab, which is now used in 
several clinical conditions, may be associated with an increase 
in BEC, as shown by the phase 3 studies in which 4% to 14% 
of patients developed predominantly asymptomatic blood 
eosinophilia [77]. Most reported data reveal a rapid increase 
and a spontaneous decrease in BEC regardless of dupilumab 
maintenance, although hypereosinophilia persisted in a 
proportion of patients [78]. Some patients from asthma trials 
developed severe eosinophil-related manifestations such 
as hypereosinophilic syndrome and chronic eosinophilic 
pneumonia [79-81]. In contrast with asthma patients, no 
clinical impact of hypereosinophilia was reported in patients 
with atopic dermatitis (AD) [82]. While data are missing 
from trials  [83-86], one real-life study reported blood 
hypereosinophilia in about 15% of AD patients treated with 
dupilumab [87]. The differences in clinical consequences 
between asthma and AD lead us to ask why this occurs. The 
mechanisms underlying hypereosinophilia in therapy with 
dupilumab remain unclear. The increase in BEC was hypothesized 
to be due to the inhibition of IL-4/IL-13 signaling. Both cytokines 
induce expression of adhesion molecules on endothelial cells, a 
crucial step in the migration of eosinophils in tissue [88-91]. By 
blocking the biological effects of these cytokines, dupilumab 
downregulates expression of the adhesion molecules. 
Therefore, eosinophils can move from bone marrow to blood, 
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mortality means that it is not universally recommended for 
the management of minor defects [104]. Recent data suggest 
that immunoglobulin replacement therapy could be effective 
in reducing respiratory infections and hospitalizations in IgG 
subclass deficiency [105], although the effect of this approach 
on asthma exacerbations and the corticosteroid-sparing effect 
due to reduction of respiratory infections have only been 
investigated in small case series [104,106].

In a realword retrospective study of 16 patients with 
severe eosinophilic asthma and copresence of bronchiectasis, 
mepolizumab effectively improved control of asthma symptoms 
(as per the Asthma Control Test score) and reduced the annual 
exacerbation rate and corticosteroid intake, showing that the 
presence of bronchiectasis does not limit the effectiveness of 
mepolizumab [107]. Similarly, a significant reduction in BEC 
and a significant improvement in FEV1, symptom burden, and 
health-related quality of life were observed in a case series of 
patients with bronchiectasis and the eosinophilic inflammatory 
endotype treated with mepolizumab (n=12) or benralizumab 
(n=9) [108]. Additional results are available for a low number 
of cases treated with dupilumab and omalizumab [109].

Patients Not Responding to Biologics

Currently available biologics for severe asthma are indicated 
for patients with eosinophilic or allergic asthma phenotypes. In 

the pivotal studies of currently approved biologics, exacerbation 
rates were markedly reduced by the most efficacious dose regimen 
compared with placebo [78,110-113]. In a real-world study, an 
even more pronounced positive effect has been observed for 
biological treatments [114]. Superresponse was observed in 
a proportion of patients and was predicted by shorter asthma 
duration and higher FEV1 and tended to be associated with 
adult-onset asthma, absence of CRSwNP, and lower body mass 
index [113]. However, a proportion of patients (about 15%) do 
not achieve control of asthma and/or nasal symptoms and can 
be classified as nonresponders, based on the discontinuation of 
biologics after less than 2 years because of clinical worsening 
with increased symptoms, decreased FEV1, or increased OCS 
use [9,10,115]. The remaining patients are defined as partial 
responders who did not fulfill the criteria for nonresponders but 
experienced residual disease manifestations even after 2 years 
of treatment, including inadequately controlled symptoms 
of asthma or rhinosinusitis, persistent airflow limitation, 
and OCS dependency [9]. The incomplete response could 
be due to irreversible remodeling of the upper and lower 
airways [116,117]. In some patients, residual asthma symptoms 
without evidence of eosinophilic inflammation may be caused 
by comorbidities such as dysfunctional breathing, obesity, 
bronchiectasis, and cardiovascular disease, but also by the 
impact of airway remodeling despite the abrogation of airway 
eosinophilia [118,119]. In fact, it has been clearly demonstrated 

High increases in
BEC >3000/µL

YES
 - Stop dupilumab
 - Treat complications

Increased BEC 
 1500-3000/µL

NO
 - Maintain treatment
 - Close checks over time
 - Consider treatment to  
   reduce BEC if >3000/µL 

Presence of complications?***
  - Maintain dupilumab
  - Monitor BEC every  
    6 mo (1 y)

Follow-up of eosinophilia 
and clinical conditions 

every month

Clinical monitoring with
ongoing dupilumab

therapy

 - Ongoing treatment  
   with dupilumab
 - Monitor BEC every 
   3 mo (1 y)

Stable eosinophils:
stop follow-up
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BEC

Stable BEC:
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150-1000/µL
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Figure. Proposal for the clinical management of dupilumab. BEC indicates blood eosinophil count. *In oral corticosteroid–dependent patients with high 
BEC, slow reduction of oral corticosteroid dosage. **Patients with more than 1500/µL at baseline should not receive dupilumab (no data from clinical 
trials available). ***Worsening of asthma symptoms. Exclude pulmonary infiltrates, antineutrophilic cytoplasmic antibodies, other hypereosinophilic syndromes, 
symptom/organ involvement.
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how asthma (and CRSwNP) remodeling largely depends on the 
IL-4/IL-13 axis, irrespective of eosinophils [120]. Importantly, 
no consensus has been reached on the definition of the clinical 
characteristics of nonresponders to a specific biologic or on 
the duration of the observation period to define a responder or 
a nonresponder. Recent guidelines recommend re-evaluation 
of response after 4-6 months, although a longer observation 
period or a composite index that takes into account other 
parameters might be preferable if we are to judge the reduction 
in exacerbations. For suboptimal response, it can be useful to 
reassess airway inflammation and airway hyperresponsiveness 
or lung function. 

The various reasons why a patient does not respond 
to a biological treatment are as follows: (i) no correct 
assessment of phenotype at baseline; (ii) clinical impact 
of concomitant comorbidities; (iii) incomplete ability of 
the biologic to abrogate the airway process; (iv) long-term 
history of asthma with irreversible histologic and functional 
consequences (airway remodeling, fixed airflow obstruction); 
(v) no adherence to biologics (patient administering therapy 
at home); and (vi) development of neutralizing antidrug 
antibodies (Table 1) [121-125]. In fact, biologics, including 
mAbs, are structurally immunogenic and may be hampered 
by the formation of antibodies (antidrug antibodies [ADA]). 
The loss of response to biologics observed in a proportion 

of treated patients may be explained by the formation of 
immune complexes between mAbs and ADAs, leading to 
their increased clearance and reducing the half-life and serum 
level or through the inhibition of drug activity by blocking the 
active site for target recognition (neutralizing ADAs) [126]. 

Randomized clinical trials revealed antimepolizumab 
antibodies in 2%-5% of patients but did not identify 
neutralizing ADAs [127,128].

ADAs have been reported in 11% of mepolizumab-treated 
patients, even though there was no correlation between 
the presence of ADAs and adverse events and no apparent 
marked changes in the pharmacokinetic or blood eosinophil 
profiles. In fact, all samples were negative for neutralizing 
antibodies [129]. 

In dupilumab-treated patients, the rate of a persistent ADA 
response ranged from 2.1% to 4.2% with the high and low 
doses, respectively [78].

Concerning benralizumab, ADA production was detected 
in a higher proportion of patients (15%), although no 
association with hypersensitivity reactions or reduced efficacy 
was identified [130]. Overall, mAbs used for severe asthma 
appear to be less immunogenic than those used in rheumatic 
and intestinal disorders [131]; however, no real-life data are 
available on the impact of biologics on efficacy in severe 
asthma patients. 

In clinical practice, a switch to an alternative drug can be 
considered in patients who do not respond to a specific biologic.

Table 2 presents a possible switching strategy, although the 
new thymic stromal lymphopoietin blocker tezepelumab has 
not been considered given its recent introduction in step 5 of 
the GINA guidelines and the lack of real-world data [76].

Conclusions

Although therapy with biologics has enabled control 
of symptoms, even in patients with severe type 2 asthma 

No adherence to standard therapy

Comorbidities: dyspnea, immunodeficiency, obesity, deconditioning, 
bronchiectasis, cardiovascular disease

Irreversible remodeling of upper and lower airways

Individual differences in drug pharmacokinetics

Formation of antidrug antibodies

Table 1. Reasons for Partial or No Response to Biologics.

No response to Preferential switch to When prevalent

Dupilumab (anti-IL-4Ra) Mepolizumab/Reslizumab Increased BEC, eosinophilic asthma at baseline

Benralizumab Increased BEC, eosinophilic asthma at baseline

Omalizumab FEV1 <80% and perennial allergen sensitization

Benralizumab (anti-IL-5R) Mepolizumab/Reslizumab ADA+

Dupilumab High FeNO, atopy; low FEV1, OCS dependency

Omalizumab FEV1 <80% and perennial allergen sensitization

Mepolizumab/Reslizumab (anti-IL-5R) Benralizumab ADA+, Persistence of BEC >150 and baseline BEC >300

Dupilumab High FeNO, low FEV1, OCS dependency

Omalizumab FEV1< 80% and perennial allergen sensitization

Omalizumab (anti-IgE) Dupilumab High FeNO, low FEV1, OCS dependency

Mepolizumab Eosinophilic asthma at baseline

Benralizumab Eosinophilic asthma at baseline

Table 2. Switching Strategy in Patients Who Do Not Respond to Biologicals.

Abbreviations: ADA, antidrug antibody; BEC, blood eosinophil count; FeNO, fractional exhaled nitric oxide; FEV1, forced expiratory volume in 1 second; OCS, oral 
corticosteroids.
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that does not respond to so-called conventional therapy, 
a proportion of affected patients are characterized by the 
presence of comorbidities that hinder and complicate 
therapeutic management. The success of therapy, even if based 
on biologics, cannot be separated from the treatment of the 
comorbidities themselves. In addition, expected undesirable 
events, such as dupilumab-induced hypereosinophilia, should 
not in themselves hinder treatment but must be adequately 
managed to ensure continuation of therapy where possible in 
order to achieve the expected benefits.
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